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Abstract. First-principles calculations combining density functional theory and many-body perturbation
theory can provide microscopic insight into the dynamics of electrons and phonons in materials. We review
this theoretical and computational framework, focusing on perturbative treatments of scattering, dynamics,
and transport of electrons and phonons. Application of these first-principles calculations in electronics,
lighting, spectroscopy, and renewable energy are discussed.

1 Introduction

Solid-state technologies depend crucially on the dynam-
ics of electrons, phonons, and excited states. For example,
charge transport in electronic and optoelectronic devices
is limited by the scattering of charge carriers with phonons
and defects [1,2], and phonon-phonon scattering controls
heat transport and thermoelectric processes [3,4]. The effi-
ciency of light-emitting devices depends on the fraction of
excited electrons recombining radiatively [5] as opposed
to non-radiatively [6,7], e.g., by multi-phonon emission,
Auger processes, or defect trapping. Finally, spintronic
devices [8] and solid-state qubits proposed for quantum
computing [9] rely on long-lived spin populations achieved
by suppressing decoherence effects [10,11]. These dynam-
ical processes take place on a femtosecond to nanosecond
timescale, and as such are challenging to study experimen-
tally [12]. Computational approaches can provide new in-
sight into these ultrafast dynamical processes in materials.

For the past few decades, first-principles calculations
have focused on computing the energetics of electrons,
phonons, and excited states. For example, computations of
band gaps [13,14], optical spectra [15], and phonon disper-
sions [16] have been a central focus of the ab initio commu-
nity. However, the dynamics of electrons and phonons is at
least as important as the energetics for understanding ma-
terials and devices. Analytical theories of the interactions
among electrons, phonons, defects, and excited states have
been investigated extensively [1,2,17], but the lack of ac-
curate approaches to compute these interactions has con-
stituted a bottleneck. Recent advances in first-principles
calculations have finally made it possible to accurately
compute electron and phonon interactions without em-
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ploying heuristic parameters, thus enabling new discover-
ies in ultrafast dynamics and transport.

First-principles calculations of electron and phonon
dynamics are uniquely promising for broad scientific im-
pact. These novel approaches can advance research in elec-
tronics, optoelectronics, and renewable energy (e.g., solar
cells and thermoelectrics), and improve device design and
manufacturing. Calculations of the dynamics of excited
electrons are also crucial for ultrafast spectroscopy. The
future success of tabletop and large-scale spectroscopy fa-
cilities depends critically on computational tools able to
microscopically interpret sophisticated experiments that
probe matter at increasingly short timescales [18,19].

This article discusses first-principles perturbative com-
putations of electron and phonon dynamics, with the aim
of bridging the gap between textbook treatments and the
current literature, as well as collecting into one place a va-
riety computational techniques. Recent trends in the ap-
plication of this framework to materials and devices are
reviewed.

2 Approaches to first-principles dynamics

First-principles calculations aimed at extending density
functional theory (DFT) [20] and related excited-state
methods [14] to study electron and phonon dynamics are
in a relatively early stage of development. Two main fami-
lies of approaches are being explored. The first is real-time
time-dependent DFT [21], which employs the Kohn-Sham
Hamiltonian to self-consistently evolve in time the elec-
tronic wavefunction and charge density [22]. This ap-
proach has been applied extensively to study electron
dynamics in materials and interfaces [23–26]. The second
approach, which is the focus of this article, employs many-
body perturbation theory [27,28] to compute the electron-
phonon (e-ph), electron-electron (e-e), phonon-electron
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(ph-e), and phonon-phonon (ph-ph) interactions and scat-
tering processes from first principles. Combined with the
Boltzmann transport equation [2] or the Kadanoff-Baym
equations [29–31], this approach enables studies of trans-
port and dynamics in materials. Additional interactions
involving defects, spin, excitons, and various excited states
are also being actively investigated, but will not be dis-
cussed here.

The Fermi golden rule (FGR) [32] is the key tool to
compute the rates and timescales of electron and phonon
scattering processes. The FGR provides an intuitive un-
derstanding of scattering in terms of the matrix elements
of the perturbation potential and the phase space of avail-
able final states [32]:

Γαi = τ−1
αi

=
2π
�

∑

αf

|Mαi,αf
|2δ (

Eαi − Eαf

)
(1)

where Γαi is the scattering rate and ταi its inverse, the
relaxation time (RT), for an initial state with quantum
numbers αi to scatter into final states with quantum num-
bers αf . The scattering is induced by the matrix element
M of the perturbation potential H ′ coupling the initial
and final states, ψαi and ψαf

respectively [32]:

Mαi,αf
= 〈ψαi |H ′|ψαf

〉 . (2)

The energy E and momentum are conserved in the scat-
tering process for systems with time and translation sym-
metries, respectively. Here, we focus on solid state calcu-
lations in crystalline materials, where, due to the discrete
translation symmetry of the lattice, crystal momentum is
conserved (modulo a reciprocal lattice vector) in the ab-
sence of defects. We assume that the Born-Oppenheimer
approximation is valid, so that the matrix elements of
interest are those associated with scattering processes
among electrons and phonons. In the language of many-
body theory, the FGR approach in equation (1) corre-
sponds to computing the imaginary part of the self-energy,
ImΣ, within the lowest-order of perturbation theory in the
given interaction. For electrons and phonons, respectively,
we obtain for the scattering rates and RTs:

Γ e−x
nk =

(
τ−1
nk

)e−x
=

2
�
ImΣe−x

nk (3)

Γ ph−x
νq =

(
τ−1
νq

)ph−x
=

2
�
ImΣph−x

νq . (4)

For each of the electron (e-ph and e-e) and phonon (ph-e
and ph-ph) interactions, denoted as e-x in equation (3)
and ph-x in equation (4) respectively, the corresponding
self-energy diagrams are shown in Figure 1, together with
the scattering processes visualized with the aid of the elec-
tronic bandstructure and phonon dispersions. Here and
throughout the article, n is the band index and k the
Brillouin zone (BZ) crystal momentum of electron Bloch
states, while ν and q are the phonon branch index and
wavevector, respectively. For first-principles calculations
of electron and phonon scattering rates, the sum over fi-
nal states in the FGR requires an integration on fine BZ

grids of the scattering matrix elements, bandstructure,
and phonon dispersions, which makes these calculations
computationally costly.

In the following, Section 3 discusses the interactions
among electrons and phonons within ab initio many-body
perturbation theory, and Section 4 examines applications
to dynamics and transport of carriers and phonons.

3 Electron and phonon interactions

3.1 Electron-phonon

The e-ph interaction is a crucial ingredient to understand-
ing carrier dynamics. For example, the energy loss rate of
excited carriers [33–35] and the room temperature elec-
trical conductivity in crystals with low impurity concen-
trations [2,36,37] are both controlled by e-ph scattering.
In DFT [20], the Kohn-Sham (KS) potential V KS, com-
puted at the equilibrium atomic positions, is employed to
obtain the electronic KS bandstructure εnk and wavefunc-
tions φnk. The vibrational motion displaces the nuclei (or
ions, i.e., nuclei plus core electrons) from their equilibrium
positions, thus perturbing the electronic states. This per-
turbation results in a temperature-dependent shift of the
bandstructure and a finite electron lifetime, defined here
as the e-ph RT. The e-ph interaction has been reviewed re-
cently [38], and derivations of the e-ph interaction and RT
(Eqs. (5)−(12) below) are also given in references [38,39].

To derive the e-ph RT, the KS potential is first ex-
panded in powers of the ion displacements {uis} away
from the equilibrium positions, where s labels the atom
and i the unit cell in the Born-von Karman (BvK)
supercell:

V KS({uis}) = V KS
0 +

∑

isα

∂V KS

∂uisα
uisα + O({uisα}2) (5)

where both V KS
0 and the derivatives of V KS are computed

at the equilibrium atomic positions1. Here and in the fol-
lowing, α = (x, y, z) are Cartesian coordinates. Quanti-
zation of the vibrational degrees of freedom is then car-
ried out by expressing the ion displacements in terms of
phonon annihilation and creation operators, b̂νq and b̂†νq

respectively:

ûisα =
∑

νq

(
�

2MsωνqN
)1/2

esα
νq e

iq·Ri(b̂νq + b̂†ν−q) (6)

where esα
νq is the αth component of the phonon eigenvec-

tor for the atom s, ωνq are phonon frequencies, Ms atomic
masses, Ri lattice vectors and N the number of unit cells
in the BvK supercell. Inserting equation (6) into equa-
tion (5), we obtain the operator for the e-ph perturbation

1 The term of order O({uisα}2) leads to the so-called Debye-
Waller correction, but is not considered here since its lowest-
order perturbation does not affect the RTs.
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Fig. 1. Electron (upper panel) and phonon (lower panel) scattering processes. Feynman diagrams for the e-ph (a), e-e (b), ph-ph
(c) and ph-e (d) scattering processes. For all processes, the self-energy is shown in a shaded box, and the scattering processes
for electrons (light gray) or phonons (dark yellow) are mapped onto the electronic bandstructure or phonon dispersions. For
the ph-e interaction, the disappearance of a phonon is indicated with a cross. Note that in all cases, the self-energy is built
by joining two half-diagrams representing microscopic scattering processes. For example, the e-ph self-energy diagram in (a) is
obtained by joining the two diagrams for phonon emission (left half) and absorption (right half), and the e-e self-energy in (b)
by joining the diagrams for IIZN (left half) and eeh Auger (right half). These processes are labeled separately with gray (IIZN)
and orange (Auger) arrows in the bandstructure inset. In the IIZN process, a carrier in state |n3k1 − q〉 transitions to |n1k1〉,
and energy is conserved by exciting an electron-hole pair consisting of an electron in state |n2k2〉 and a hole in state |n4k2 + q〉.
In the Auger process, the electron-hole pair recombines, giving out the energy to a carrier in state |n1k1〉 which transitions to
|n3k1 − q〉. Because both processes are possible at finite temperature, the Auger and IIZN rates should be computed together
through the self-energy diagram in (b).

potential:

V̂ KS({uis})− V̂ KS
0 =

∑

νq

(
�

2ωνq

)1/2

ΔνqV
KS(b̂νq + b̂†ν−q)

(7)
where we defined generalized phonon-mode-resolved e-ph
perturbations:

ΔνqV
KS =

∑

sα

esα
νq√
Ms

∑

i

eiq·Ri

√N
∂V KS

∂uisα
. (8)

The first-principles e-ph perturbation Hamiltonian,
Ĥe−ph, is then obtained by quantizing the electronic states
with electron annihilation and creation operators, ĉnk and
ĉ†nk respectively:

Ĥe−ph =
∑

nk
n′k′

〈φn′k′ |V̂ KS({ûis}) − V̂ KS
0 |φnk〉 ĉ†n′k′ ĉnk

=
(

�

2ωνq

)1/2 ∑

nn′k
νq

〈φn′k+q|ΔνqV
KS|φnk〉

× ĉ†n′k+qĉnk(b̂νq + b̂†ν−q) (9)

where we applied crystal momentum conservation in the
second line of equation (9). The e-ph matrix elements,
gnn′ν(k,q), are thus defined as:

gnn′ν(k,q) =
(

�

2ωνq

)1/2

〈φn′k+q|ΔνqV
KS|φnk〉 . (10)

They can be computed with density functional pertur-
bation theory (DFPT) [16,40], for example using the
Quantum ESPRESSO [41] code. The first-principles
e-ph Hamiltonian extends the typical textbook treat-
ment [42] by including multiple electronic bands and
phonon branches:

Ĥe−ph =
∑

nn′k
νq

gnn′ν(k,q)ĉ†n′k+qĉnk(b̂νq + b̂†ν−q). (11)

Starting from the e-ph Hamiltonian, the e-ph RTs can be
derived in several ways. It is instructive to analyze them
in detail, after stating the result upfront.

Because the e-ph Hamiltonian creates or annihilates
one phonon, the lowest order of perturbation theory giving
a non-zero self-energy is the second order, namely order
O(|gnn′ν(k,q)|2) in the e-ph matrix elements. The e-ph
scattering rates obtained within second order perturbation
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theory read:

Γ e−ph
nk (T ) =

2π
�

1
N

∑

n′νq

|gnn′ν(k,q)|2 [(Nνq + 1 − fn′k+q)

× δ(Enk − En′k+q − �ωνq)
+ (Nνq + fn′k+q) δ(Enk − En′k+q + �ων,q)] .

(12)

The e-ph RTs are obtained as the inverse of the scat-
tering rates, τe−ph

nk = (Γ e−ph
nk )−1. In equation (12), the

e-ph matrix elements describe an electron in the Bloch
state |nk〉 with quasiparticle energy Enk that scatters into
state |n′k + q〉 with quasiparticle energy En′k+q, due to
a phonon with branch index ν, wavevector q, and fre-
quency ωνq. The first and second terms in square brack-
ets correspond to phonon emission and absorption, respec-
tively, and the temperature dependence of the scattering
rate stems from the electron and phonon occupation fac-
tors, fnk and Nνq respectively, while the e-ph matrix el-
ements are typically computed at zero temperature using
DFPT. Note that the scattering rates and RTs are re-
solved for different bands and k-points in first-principles
calculations, thus providing rich microscopic information.
To converge the e-ph RTs, interpolation of the e-ph matrix
elements is necessary since the sum over q in equation (12)
requires 104−106 q-points to converge [33–35,37], an un-
realistic task for direct DFPT calculations due to compu-
tational cost. An interpolation approach using maximally
localized Wannier functions [43] has been recently devel-
oped [44]; alternative interpolation schemes using local-
ized basis sets are being developed by the author.

A rigorous and general approach to derive equa-
tion (12) consists of treating the e-ph interaction per-
turbatively, using the Feynman-diagram technique. The
equilibrium electron Green’s function Gnk(τ) in imaginary
time τ is first expanded using finite-temperature pertur-
bation theory [42]:

Gnk(τ) = −
∞∑

m=0

(−1)m

m!

∫ β

0

dτ1 . . .

∫ β

0

dτm

×
〈
Tτ Ĥ

e−ph(τ1) · · · Ĥe−ph(τm)ĉnk(τ)ĉ†nk(0)
〉

C

(13)

where β = (kBT )−1 is the inverse temperature, the elec-
tron and phonon creation and annihilation operators in
Ĥe−ph are in the interaction picture, and the subscript
C indicates that the sum includes only connected dia-
grams [42]. In equation (13), only terms containing prod-
ucts with an even number of phonon operators can give a
non-zero contribution. The lowest non-zero term in Ĥe−ph

yields the e-ph self-energy Σe−ph
nk shown in Figure 1a, also

known as the GD self-energy (in analogy with the GW
self-energy [13]):

Σe−ph
nk (iωi, T ) = − 1

�β

1
N

∑

n′νq

|gnn′ν(k,q)|2

×
∑

j

Gn′k+q(iωi + iωj)Dνq(iωj) (14)

where ωi are Matsubara frequencies, andG andD are elec-
tron and phonon unperturbed propagators, respectively.
Summing over the Matsubara frequencies ωj and perform-
ing the Wick rotation to the real frequency axis [42], the
imaginary part of the GD diagram gives the e-ph scatter-
ing rate in equation (12).

While elegant, the Matsubara technique can be chal-
lenging to apply. A trick to obtain equation (12) with-
out summing over Matsubara frequencies is to use non-
equilibrium Green’s functions on the Keldysh contour
combined with the Langreth rules [30]. In this technique,
the GD self-energy diagram is written as an integral over
the Keldysh contour C [30]:

Σe−ph
nk (ω, T ) =

1
N

∑

n,ν,q

|gnn′ν(k,q)|2

×
∫

C
dω′Gn′k+q(ω + ω′)Dνq(ω′) (15)

and then transformed into a real-axis frequency integral
using the Langreth rules [30]:

Σe−ph
nk (ω, T ) =

1
N

∑

n,ν,q

|gnn′ν(k,q)|2

×
∫ ∞

−∞
dω′[G<

n′k+q(ω + ω′)DA
νq(ω′)

+ GR
n′k+q(ω + ω′)D<

νq(ω′)]. (16)

After computing the on-shell self-energy by substituting
ω = Enk and carrying out the integral, the GD e-ph
scattering rate in equation (12) is obtained through equa-
tion (3). The advantage of this contour approach is that
expressions for the retarded, advanced, and lesser Green’s
functions (GR, GA, and G< for electrons, respectively,
and DR, DA, and D< for phonons) are available in the
literature (for example, see Ref. [30]), and the frequency
integral is trivial as it merely involves evaluating delta
functions. This approach is thus a simplified way of deriv-
ing equation (12).

One last approach to compute the GD e-ph scattering
rate consists in considering the FGR rate of all the pro-
cesses in which an electron emits or absorbs one phonon,
and combining them into a first-order rate equation for
the time-dependent electron populations fnk(t) [2]:
(
∂fnk

∂t

)e−ph

= −2π
�

1
N

∑

n′νq

|gnn′ν(k,q)|2

× [δ(Enk − En′k+q − �ωνq)Fem(t)
+ δ(Enk − En′k+q + �ωνq)Fabs(t)] (17)

where the phonon emission (Fem) and absorption (Fabs)
terms are constructed by associating factors f and 1 − f
with the initial and final electronic states in a given scat-
tering process, respectively, and factors N and N+1 with
phonon absorption or emission [2]:

Fabs = fnk(1 − fn′k+q)Nνq − fn′k+q(1 − fnk)(Nνq + 1)
Fem = fnk(1 − fn′k+q)(Nνq + 1) − fn′k+q(1 − fnk)Nνq.

(18)

http://www.epj.org


Eur. Phys. J. B (2016) 89: 239 Page 5 of 15

For example, the first term in the definition of Fabs corre-
sponds to an electron in the Bloch state |nk〉 that scatters
into |n′k + q〉 by absorbing one phonon, while the second
term is its time-reversal conjugate, the rate of which is
added with a minus sign to satisfy the principle of de-
tailed balance at equilibrium. Rewriting the carrier pop-
ulations as the sum of their value at equilibrium f eq

nk and
the deviation from equilibrium δfnk(t) = fnk(t)−f eq

nk, and
grouping terms that are linear in δfnk(t), we obtain [2]:

(
∂fnk

∂t

)e−ph

= −δfnk(t)

τe−ph
nk

+ other terms. (19)

It is seen by carrying out the calculation that (τe−ph
nk )−1

in the first term in the righthand side of equation (19)
is equal to the e-ph scattering rate of equation (12). The
“other terms” give the rate for the scattering processes in
which the electrons are scattered back into the state |nk〉.
When these terms are neglected, the solution of equa-
tion (19) is an electron population decaying exponentially
toward the equilibrium population f eq

nk with a decay rate
Γnk = (τe−ph

nk )−1:

fnk(t) = [fnk(0) − f eq
nk] e−t/τe−ph

nk + f eq
nk. (20)

This important result offers a physical interpretation of
the GD e-ph scattering rate: it is the exponential decay
rate of a population of electrons prepared in state |nk〉
due to scattering events with phonons. Terms that make
the population decay deviate from an exponential solu-
tion are neglected. This interpretation is consistent with
the fact that the perturbed Green’s function, through
Dyson’s equation with the GD self-energy, has the form
Gnk(E) = (E−Enk−Σnk)−1, which implies an exponen-
tial decay in time of the Fourier transform Gnk(t), with a
rate proportional to ImΣnk. The rate-equation model pre-
sented above is a particular case of the Boltzmann trans-
port equation for a homogeneous system in the absence of
applied fields, as discussed below.

So far, most ab initio calculations that included the
e-ph interaction have focused on computing the GD
self-energy to obtain e-ph RTs, carrier dynamics, and
transport properties; additional e-ph diagrams (e.g. the
Debye-Waller diagram) have been employed to study
temperature-dependent bandstructures [45,46]. It is un-
clear at present whether higher-order diagrams are neces-
sary to treat cases where the GD diagram approximation
is inadequate − for example, at high temperature or for
materials with strong e-ph interactions − or whether a ver-
tex correction or approaches beyond perturbation theory,
such as a strong e-ph coupling theory, are better suited to
model these scenarios. First-principles e-ph calculations
have not yet ventured into these conceptually more chal-
lenging cases.

3.2 Electron-electron

The e-e interaction plays a central role in ground and ex-
cited state theories of materials. In the Kohn-Sham equa-
tion of DFT, the e-e interactions beyond the Hartree term

are approximated by the exchange-correlation potential.
The latter is a functional of the electronic density [20], and
as such it typically lacks an exact expression in terms of
Feynman diagrams. To obtain accurate quasiparticle ener-
gies, and in particular the bandstructure Enk, the Kohn-
Sham eigenvalues can be corrected, among other options,
through the GW method [13], where G is the electron
Green’s function, and W the screened Coulomb interac-
tion. In its simplest form, the GW method corresponds to
replacing the approximate exchange-correlation functional
with a non-local, energy-dependent self-energy, which is
equivalent to the screened Fock exchange with the dy-
namical screening obtained within the random-phase ap-
proximation (RPA). The quasiparticle bandstructure and
electronic states can be obtained with routine GW calcula-
tions, for example using the Yambo [47], BerkeleyGW [48],
or ABINIT [49,50] codes, and constitute a well-defined
starting point to compute e-e scattering processes, as dis-
cussed next.

Interactions among charge carriers (here, electron and
hole quasiparticles) are mediated by the screened Coulomb
interaction, W , and cause a finite carrier lifetime, defined
here as the e-e RT, τe−e

nk . Phonon or impurity assisted e-e
processes are also possible [17,51], in which additional mo-
mentum in the scattering process is provided by a phonon
or impurity, respectively. The two main e-e scattering
mechanisms discussed here are the Auger and impact ion-
ization (IIZN) processes [17,52,53] (see Fig. 1b). Auger
scattering and IIZN are critical to understanding carrier
dynamics in materials, as they determine the recombina-
tion [52] and energy loss rate [33] of excited carriers, espe-
cially at high carrier concentrations and for carriers with
large excess energy with respect to the band edges. In
particular, Auger scattering limits the efficiency of elec-
tronic, optoelectronic, and photovoltaic devices through
carrier recombination.

In Auger processes, an electron-hole pair recombines
and gives out the energy to a third carrier, which is an elec-
tron in so-called eeh processes and a hole in hhe processes.
The Auger mechanism can thus equivalently be seen as the
scattering of an electron pair (eeh process) or a hole pair
(hhe process) into final states, with the restriction that an
electron-hole pair recombines in the process, thus changing
the number of carriers2. While complex analytical treat-
ments of Auger scattering employing two-particle, three-
particle [55] and even four-particle [56] Green’s functions
have been explored (especially for processes involving core
electrons), first-principles Auger calculations have so far
focused on valence electron processes and employed rel-
atively simple theories, as discussed below. The IIZN is
the inverse process of Auger recombination (see Fig. 1b).
In IIZN scattering, a carrier loses energy transitioning to
a state energetically closer to the band edges, within the
conduction or valence bands for electrons and holes respec-
tively. Energy is conserved by exciting an electron-hole

2 Intraband Auger and IIZN processes that do not change
the number of carriers are also possible, though not discussed
here. Some of these processes can be computed using out-of-
equilibrium GW [54].
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pair, across the band gap in a semiconductor and across
the Fermi energy in a metal. At finite temperature, the
Auger and IIZN rates need to be computed together and
combined, since they are related to each other by detailed
balance.

First-principles calculations of Auger and IIZN scat-
tering can build on the quasiparticle bandstructure and
dynamical screened Coulomb interaction computed within
GW. However, to reduce computational cost most first-
principles Auger calculations carried out so far employed
either model dielectric screening [57–59] or the static (zero
frequency) RPA screening [52]. On the other hand, IIZN
calculations employing the dynamical screened Coulomb
interaction are rather common.

The imaginary part of the GW self-energy, ImΣGW,
computed on-shell at the quasiparticle energy, can be
employed to compute the IIZN scattering rate at zero
temperature:

Γ e−e,IIZN
nk = (τ−1

nk )e−e,IIZN =
2
�
ImΣGW(ω = Enk). (21)

This rate accounts for the creation of electron-hole pairs
upon energy loss by a single quasiparticle. Such IIZN cal-
culations using GW have been employed extensively to in-
terpret ARPES linewidths and electronic RTs [53,60]. For
example, we recently employed GW calculations to com-
pute the IIZN contribution to the RTs of excited carriers
in semiconductors and metals [33–35].

Auger processes, both direct (namely, mediated by the
screened Coulomb interaction alone) and phonon assisted,
have been computed from first principles chiefly in simple
semiconductors [52,58,59,61]. The key quantities in first-
principles calculations of Auger scattering are the matrix
elements of the screened Coulomb interaction. Using the
shorthand notation j1 ≡ (n1k1) to label the band and
crystal momentum of Bloch states, Auger scattering can
be seen as the scattering from initial states j1 and j2 into
final states j3 and j4 (see the orange arrows in the band-
structure of Fig. 1b). The screened Coulomb interaction
W1234 among the four Bloch states involved in Auger scat-
tering has the well-known expression [13]:

W1234 ≡ 〈ψj1ψj2 |Ŵ |ψj3ψj4〉
=

1
V

∑

GG′
ρn1,n3(k1,q,G)WGG′(q, ω)

× ρ∗n4,n2
(k4,q,G′)δk3,k−q+G δk4,k+q+G′ (22)

where q is the transferred momentum folded to the first
BZ, and ρn,n′(k,q,G) = 〈nk|ei(q+G)r|n′k − q〉 are dipole
matrix elements. The screened Coulomb interaction in a
plane-wave basis,WGG′(q, ω), depends on the approxima-
tion employed for the screening. For the dynamical RPA
screening used in GW calculations, it reads [13]:

WGG′(q, ω) = v(q + G)δG,G′

+ v(q + G)χ0
GG′(q, ω)v(q + G′) (23)

where v(q+G) = 4πe2/ |q + G|2 is the bare Coulomb in-
teraction, and χ0

GG′(q, ω) the dynamical (i.e., frequency-
dependent) RPA polarization function [13,47]. Auger

scattering rate computations require a large number of
screened Coulomb interaction matrix elements. To reduce
computational cost, the static (i.e., zero frequency) po-
larization χ0

GG′(q, ω = 0) has been employed in a few
works [52], though a common approach is to approxi-
mate the static dielectric screening with a model function,
εM (q, ω = 0), in which case [59]:

WM
GG′(q) =

1
εM (q + G)

4πe2

|q + G|2 + λ2
δG,G′ (24)

where λ is the Debye screening length (e.g., due to free
carriers). While employed widely in GW calculations, the
dynamical RPA screening in equation (23) has not been
employed to study Auger scattering to our knowledge.

The Auger rate (AR) can be computed using the FGR,
by obtaining the square e-e matrix elements |M1234|2 for
Auger scattering among four given electronic states. Care
must be taken to take spin into account correctly. The con-
ventional approximation for processes in which states j1
and j2 possess the same spin is to combine the direct
term W1234 and the exchange term W1243 and then take
the square [17,59]:

∣∣∣M↑↑
1234

∣∣∣
2

= |W1234 −W1243|2 (25)

while for the case of states j1 and j2 with opposite spin,
the square matrix elements of the direct and exchange
processes are summed [17,59]:

∣∣∣M↑↓
1234

∣∣∣
2

= |W1234|2 + |W1243|2 . (26)

The total matrix element involved in Auger scattering for
any given four states is thus [17,59]:

|M1234|2 =
∣∣∣M↑↑

1234

∣∣∣
2

+
∣∣∣M↑↓

1234

∣∣∣
2

. (27)

Finally, the AR can be expressed using the FGR in terms
of the total rate RAR for any carrier to recombine through
Auger processes. This AR corresponds to the rate of
change of the carrier population per unit volume, and it
includes a factor of 2 to sum over spin [17,59]3:

RAR = 2
2π
�

∑

j1 j2 j3 j4

P |M1234|2 δ(Ej1 + Ej2 − Ej3 − Ej4)

(28)
where the population factor is P = f1f2(1 − f3)(1 − f4)
for eeh processes and P = (1 − f1)(1 − f2)f3f4 for hhe
processes. Alternatively, the quasiparticle AR of a car-
rier in a given Bloch state with a given spin can also be
computed [17]:

Γ e−e,AR
j1

=
2π
�

∑

j2 j3 j4

P ′ |M1234|2 δ(Ej1 + Ej2 − Ej3 − Ej4)

(29)
3 To avoid double-counting, the sum in equation (28) must

be carried out over distinct pairs of initial and final states, as
opposed to over all states ji.
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where P ′ = P/f1 for eeh processes and P ′ = P/(1 − f1)
for hhe processes.

To compute the ARs, fine BZ grids are needed to con-
verge the sums over initial and final momenta [52], similar
to the case of e-ph scattering. Wannier interpolation of the
band structure has been recently employed to achieve such
a fine BZ sampling [58,59,61]. Recent work [59] has ex-
tended the formalism discussed above to compute phonon-
assisted ARs, by combining model dielectric screening
with ab initio e-ph matrix elements. So far, first-principles
AR calculations have been carried out only for simple
semiconductors, often employing model screening rather
than the dynamical RPA screening. Possible future direc-
tions include employing dynamical screening, computing
phonon or defect assisted processes, and treating more
complex materials.

3.3 Phonon-phonon

Phonon dispersions and eigenvectors can be routinely
computed from first principles within the harmonic ap-
proximation, using either DFT plus finite differences or
density functional perturbation theory (DFPT) [16,62].
While phonons in the harmonic approximation possess
an infinite lifetime, scattering with electrons and other
phonons results in finite phonon RTs. The latter can be
measured with Raman or neutron scattering experiments,
or computed from first principles using DFPT [40], among
other approaches (e.g, finite differences, molecular dy-
namics, etc.). The phonon lifetime due to scattering with
phonons, defined here as the ph-ph RT τph−ph

νq , can be ob-
tained from the imaginary part of the ph-ph self-energy
ImΣph−ph

νq using equation (4). The lowest-order ph-ph self-
energy is shown in Figure 1c.

To obtain the ph-ph RTs, the total energy of the crys-
tal E({uis}) is first expanded as a Taylor series in the
small ion displacements uis about the equilibrium posi-
tions, with s the ion and i the lattice site labels [63,64]:

E({uis}) = E0 +
1
2

∑

i1i2
s1s2
α1α2

φ(2)(i1s1α1; i2s2α2)ui1s1α1ui2s2α2

+
1
3!

∑

i1i2i3
s1s2s3
α1α2α3

φ(3)(i1s1α1; i2s2α2; i3s3α3)

× ui1s1α1ui2s2α2ui3s3α3

+ O({uis}4) (30)

where E0 is the ground-state energy, the second term con-
taining the φ(2) coefficients gives the harmonic approxima-
tion, and the remainder are the anharmonic terms. The
nth order coefficients φ(n) are equal to the nth derivatives
of the total energy with respect to the ion displacements
about the equilibrium positions. For example, the coef-
ficients φ(2)(i1s1α1; i2s2α2) are the force constants which
give the force in the α1 direction on the atom s1 in the unit
cell i1 when atom s2 in the unit cell i2 is displaced in the

α2 direction. The harmonic approximation then consists
of neglecting the terms containing more than two displace-
ments and diagonalizing the resulting Hamiltonian to give
the phonon dispersions and eigenvectors.

The anharmonicity of the crystal potential about the
lattice equilibrium positions, given by the terms in equa-
tion (30) containing three or more displacements, causes
phonons to scatter with each other [63]. In third-order
processes, which are regulated by the force constants φ(3),
two phonons can merge to form one with higher fre-
quency (upconversion process), or a phonon can split into
two lower-frequency phonons (difference process). The
third-order ph-ph RTs, which can be computed from first
principles, are associated with such three-phonon decay
processes [65–67]. Higher orders terms, such as those for
four-phonon processes, are more challenging to compute
and are chiefly relevant at high temperature or for phase
transitions and thermal expansion studies [68]. Such quar-
tic terms have rarely been computed from first principles.

The anharmonic ph-ph scattering rates Γ ph−ph
νq , and

their inverse, the RTs τph−ph
νq , are obtained from equa-

tion (30) by quantizing the lattice displacements uis

(see Eq. (6)). Third-order anharmonic coupling matrix
elements V (3)(ν1q1; ν2q2; ν3q3) are then defined, which
quantify the coupling between three modes with branch
indices νi and crystal momenta qi, with i = 1, 2, 3. The ex-
pression for V (3) involves generalized lattice Fourier trans-
forms of the force constants φ(3), and is given in refer-
ence [63]. A finite-temperature perturbation expansion of
the phonon propagator in powers of V (3) can thus be de-
veloped, leading to ph-ph processes to all orders of pertur-
bation theory [63,64]. The final result for the third order
ph-ph scattering rate for a phonon with a given branch
index ν and wavevector q is [63,64,67]:

Γ ph−ph
νq =

18π
�2

∑

ν1ν2
q1q2

∣∣∣V (3)
ph (νq, ν1q1, ν2q2)

∣∣∣
2

δq+q1+q2,G

× [(Nν1q1 +Nν2q2 + 1)δ(ωνq − ων1q1 − ων2q2)
+2(Nν1q1 −Nν2q2)δ(ωνq + ων1q1 − ων2q2)]

(31)

where Nνq are phonon populations, ωνq are phonon fre-
quencies, the factor of 18 arises from the ways of pairing
up the phonon lines in the self-energy diagram [64], and
the Kronecker delta expresses crystal momentum conser-
vation. The first term in the square bracket describes up-
conversion processes, and the second difference processes.

Alternative ways of deriving equation (31) include the
rate equation and contour integral techniques discussed
above. The rate-equation derivation is particularly sim-
ple, and worth discussing briefly. In this approach, the
rate of change of the phonon population is written as a
sum of the FGR rates for three-phonon processes. Each
participating phonon is either absorbed, with an associ-
ated population factor of N , or emitted, with an asso-
ciated population factor of N + 1. Writing the FGR for
all the three-phonon processes, associating to them the
coupling matrix elements V (3)

ph (νq, ν1q1, ν2q2), and using
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a multiplicity factor M = 9 that accounts for process
combinatorics, we obtain:

(
∂Nνq

∂t

)ph−ph

= −2π
�2

M
∑

ν1ν2
q1q2

∣∣∣V (3)
ph (νq, ν1q1, ν2q2)

∣∣∣
2

× {{[Nνq(Nν1q1 + 1)(Nν2q2 + 1)]
− [Nν1q1Nν2q2(Nνq + 1)]}
× δ(ω − ω1 − ω2)
+ {[NνqNν1q1(Nν2q2 + 1)]
− [Nν2q2(Nνq + 1)(Nν2q2 + 1)]}
× δ(ω + ω1 − ω2)
+ {[NνqNν2q2(Nν1q1 + 1)]
− [Nν1q1(Nνq + 1)(Nν1q1 + 1)]}
× δ(ω − ω1 + ω2)} (32)

where each distinct three-phonon process is enclosed in a
square bracket, and carries a plus or minus sign accord-
ing to whether it involves absorption or emission of the
|νq〉 phonon, respectively4. We simplify equation (32) by
rewriting the phonon populations as Nνq = N eq

νq + δNνq,
namely, as the sum of the equilibrium populations and the
deviation from equilibrium, and separate the terms linear
in δNνq:

(
∂Nνq

∂t

)ph−ph

= −δNνq(t)

τph−ph
νq

+ other terms. (33)

It is seen by inspection that (τph−ph
νq )−1 is equal to the ph-

ph scattering rate of equation (31). We thus interpret the
ph-ph RT as the exponential decay lifetime of a population
of phonons, with a given branch index and wavevector, due
to three-phonon scattering processes. This RT approxima-
tion neglects deviations from an exponential decay as well
as fourth and higher order diagrams related to scattering
processes involving four or more phonons.

Ph-ph scattering processes play a key role in phonon
dynamics. For example, the ph-ph interaction is the main
contribution to the RT of a phonon in intrinsic semicon-
ductors and insulators. Accordingly, ph-ph scattering reg-
ulates the thermal conductivity, and it further contributes
in all materials (including metals) to determine electron
dynamics, and in particular the equilibration rate of ex-
cited carriers [12]. First-principles calculations of ph-ph
RTs have enabled dramatic advances in microscopic un-
derstanding of phonon dynamics, as outlined in Section 4.

3.4 Phonon-electron

As a result of the interaction with electrons, phonons ac-
quire a finite lifetime, the so-called ph-e RT, τph−e

νq , which
plays a central role in phonon transport in metals and
doped semiconductors. It should not be confused with

4 The �
2 in the denominator derives from using frequency

instead of energy conservation.

the e-ph RT discussed above. The ph-e scattering rate,
Γ ph−e

νq , can be computed through equation (4) from the
imaginary part of the lowest-order ph-e self-energy (see
Fig. 1d) [69,70]:

Γ ph−e
νq (T ) =

2
�
ImΣph−e

νq = 2
2π
�

1
N

∑

nn′k

|gnn′ν(k,q)|2

× (fnk − fn′k+q) δ(Enk − En′k+q + �ωνq).
(34)

In the lowest-order of perturbation theory, ph-e scatter-
ing processes arise as phonons polarize the electron gas
by generating electron-hole pairs with a center-of-mass
momentum q, in a process mediated by the e-ph inter-
action. Accordingly, the ph-e self-energy diagram consists
roughly of the RPA polarization function χ0 multiplied
by the square of the e-ph coupling matrix elements, i.e.,
Σph−e

νq ≈ g2(q)χ0(q, ωνq). The possible approaches to de-
rive the ph-e scattering rate in equation (34) within per-
turbation theory are analogous to those discussed above
for the e-ph case. For example, using the rate-equation ap-
proach, the rate of change of the phonon population Nνq

due to scattering with electrons reads [2]:
(
Nνq

∂t

)ph−e

= −4π
�

1
N

∑

nn′k

|gnn′ν(k,q)|2

× δ(Enk − En′k+q + �ωνq)Fabs (35)

where Fabs has been defined above in equation (18).
Analogous to the ph-ph case, keeping terms linear in
δNνq(t) [2]:

(
Nνq

∂t

)ph−e

= −δNνq(t)

τph−e
νq

+ other terms (36)

where it is seen by carrying out the calculation that
(τph−e

νq )−1 in equation (36) is equal to the ph-e scattering
rate in equation (34). The ph-e RT thus defines the expo-
nential decay constant for a phonon population initially
occupying a given phonon mode with defined branch in-
dex and wavevector, due to the interaction with electrons
within the lowest order of perturbation theory.

4 First-principles carrier dynamics

The framework presented above centers on computing
scattering rates and RTs of carriers and phonons. Using
these quantities, dynamics and transport in materials can
be studied from first principles. The Boltzmann transport
equation (BTE) is the theoretical approach underlying
much of the first-principles work in carrier and phonon dy-
namics. In this section, we first discuss the BTE, and then
briefly mention recent developments on first-principles im-
plementations of the Kadanoff-Baym equations (KBEs),
which are quantum kinetic equations that can include dy-
namical effects not captured by the BTE. We close the sec-
tion by discussing applications to dynamics and transport.
Several example calculations and recent research trends
are presented, without attempting to provide a compre-
hensive review.

http://www.epj.org


Eur. Phys. J. B (2016) 89: 239 Page 9 of 15

4.1 Boltzmann transport equation

The BTE describes the flow in phase space of the electron
and phonon occupations, fnk(r, t) and Nνq(r, t), respec-
tively. The latter can be interpreted as the probability
distributions for an electron (phonon) to occupy a state
with given crystal momentum and band (branch) index,
at coordinate r and time t. Since the crystal momentum
and position are both specified at the same time, the occu-
pation distributions, and thus the BTE, are semiclassical
in nature. The first-principles formalism extends standard
analytical treatments [71] by accounting for multiple elec-
tronic bands and phonon branches, and by employing ma-
terials properties computed directly rather than taken to
be empirical parameters.

The dynamics of electrons and phonons in the BTE
is typically split into two parts: a slowly varying flow
in coordinate and momentum space driven by external
fields, commonly called “drift”, and a collision dynamics
induced by scattering processes, which leads to discrete
transitions in electron and phonon momentum space [72].
The time evolution of the electron and phonon occupa-
tions are given by the sum of the drift and collision flows.
The BTE is adequate to describe length and time scales
spanning multiple scattering events, i.e., the so-called dif-
fusive or hydrodynamic regime. It further assumes the va-
lidity of Fermi liquid theory, and thus that interacting
quasiparticles such as carriers and phonons possess a one-
to-one mapping to their non-interacting counterparts. Ac-
cordingly, interactions are seen as the source of collisions
among the quasiparticles, with scattering rates computed
from first-principles.

The BTE for electrons in the presence of a force field F
reads [2,72]:

∂fnk(r, t)
∂t

= −[∇rfnk(r, t) · vnk

+ �
−1∇kfnk(r, t) ·F] + I[fnk] (37)

where vnk are band velocities. The bracket gives the drift
term, while the scattering integral I[fnk] is the collision
term, which is a functional of the electron populations [2]:

I = −
∑

n′k′
Γnk→n′k′ · fnk(r, t) [1 − fn′k′(r, t)]

+ Γn′k′→nk · fn′k′(r, t) [1 − fnk(r, t)] . (38)

Here, Γnk→n′k′ are scattering rates from the electronic
Bloch state |nk〉 to other states |n′k′〉; the first line gives
the total scattering rate out of the state |nk〉, while
the second line gives the scattering from all other states
to |nk〉. Typical driving forces in the BTE include electric
and magnetic fields, strain, and temperature or chemical
potential gradients [2,72]. The material properties enter
the BTE both in the drift term through the bandstructure
and in the collision term through the scattering rates.

To simplify the scattering integral, the relaxation time
approximation (RTA) can be introduced, in which the
electron population returns to equilibrium with a rate pro-
portional to the deviation δfnk(t) = fnk(t)−f eq

nk from the

equilibrium population f eq
nk. Within the RTA, the scatter-

ing integral in equation (38) becomes:

I[fnk] = −δfnk(t)
τnk

. (39)

In the absence of applied forces and for a homogeneous
system, so that the drift term vanishes, the so-called state-
dependent RTA yields:

∂fnk(t)
∂t

= −δfnk(t)
τnk

(40)

i.e., the equation found above for the case of e-ph scatter-
ing. The solution of the state-dependent RTA is a carrier
population in which each state decays exponentially in
time to the equilibrium population:

fnk(t) = [fnk(0) − f eq
nk] e−t/τnk + f eq

nk. (41)

Most first-principles calculations for carriers out of equi-
librium rely on some form of RTA, and have so far been
limited to the case of homogeneous systems in which the
spatial dependence of the carrier population is neglected.
One limitation of the RTA is that it does not conserve
the number of particles and energy, so that it is ade-
quate only to obtain rough timescale estimates in spe-
cific conditions (e.g., low carrier density). A current focus
of first-principles calculations is the computation of car-
rier transport coefficients, which involve solving the BTE
at steady-state under an applied field. Transport proper-
ties such as electrical and thermal conductivities and ther-
moelectric coefficients can be computed either within the
RTA or with numerical solutions of the BTE that explic-
itly compute the scattering integral with iterative [73,74]
or Monte Carlo methods.

A BTE for phonons can also be derived [72,73]:

∂Nνq(r, t)
∂t

= − [∇rNνq(r, t) · vνq + �
−1∇qNνq(r, t) · F]

+ I[Nνq] (42)

where F is a driving force (e.g., strain or a temperature
gradient), the phonon velocities vνq are obtained from
the phonon dispersions, and I[Nνq] is the scattering inte-
gral. The scattering integral including three-phonon pro-
cesses and isotopic scattering is given in references [72,73].
Considerations analogous to the electron BTE also hold
for phonons, including the widespread use of the RTA to
compute transport coefficients such as the phonon ther-
mal conductivity. Studies of thermal transport that em-
ploy first-principles data as input to solve the phonon BTE
in inhomogeneous (e.g., nanoscale) systems are also being
actively investigated [75,76].

The coupled dynamics of electrons and phonons is
a particularly exciting problem with important applica-
tions in transport [77], device physics, and spectroscopy.
The e-ph scattering rates depend on both the elec-
tron and phonon occupations, so that the electron and
phonon BTEs become coupled due to the e-ph interac-
tion. In the absence of driving fields, solving the coupled
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BTEs involves a large system of Ne×Nph differential equa-
tions, where Ne = Nb×Nk equations are for electrons and
Nph = Nν × Nq for phonons. Here, Nb and Nk are the
number of bands and k-points, respectively, and Nν and
Nq the number of phonon branches and q-points. While
solving such a large set of coupled differential equations
is challenging, it would enable dramatic advances in un-
derstanding coupled carrier and phonon dynamics, a holy
grail in solid state physics. Given the recent progress in
computing the electron and phonon dynamics individu-
ally, the time is ripe for ab initio calculations of coupled
electron and phonon dynamics.

4.2 Kadanoff-Baym equations

The BTE is a useful tool to investigate dynamical and
transport processes, one that enables wide-ranging studies
of electron and phonon dynamics. As highlighted above,
it is a semiclassical equation, which further assumes the
validity of perturbation theory and Fermi liquid theory.
The BTE describes scattering processes in an incoherent
regime, and as such it cannot be employed to study the
dynamics of coherent superpositions of states. In addition,
an ansatz needs to be made about the initial nonequilib-
rium electron and phonon populations. For the important
case of ultrafast dynamics following a short laser pulse
excitation, the change in carrier (or phonon) populations
due to both the incipient excitation and scattering cannot
be included on the same footing in the BTE, though in
reality the two processes often overlap in time.

To overcome these and other limitations, quan-
tum kinetic equations have been developed that can
more rigorously describe electron and phonon dynam-
ics out of equilibrium [29]. The Kadanoff-Baym equa-
tions (KBEs) are an example of quantum kinetic equa-
tions based on non-equilibrium Green’s functions. We
will discuss the KBEs only very briefly, chiefly because
they represent an emerging area of investigation in first-
principles dynamics; for more comprehensive discussions,
see references [29,31,78,79].

The KBEs have been developed and traditionally ap-
plied to systems described by model Hamiltonians [30].
Recent numerical implementations of the KBEs for inho-
mogeneous systems [79] have brought the approach one
step closer to the first principles community. In these nu-
merical implementations, the external fields are treated
non-perturbatively and the many-body interactions are
included through a Φ-derivable self-energy, which guaran-
tees that the macroscopic conservation laws of the system
are fulfilled [80].

Next, we discuss basic aspects of the KBEs. Using the
compact notation 1 = (r1, t1) for space-time coordinates,
the contour-ordered Green’s function satisfies the equation
of motion [79]:

i∂t1G(1, 2) = h(1)G(1, 2) + δ(1, 2) +
∫

C
d3Σ(1, 3)G(3, 2)

(43)
where h(1) is the local part of the Hamiltonian, the self-
energy Σ captures all the interactions beyond the Hartree,

and C denotes integration on the Keldysh contour. Some
of the approximations employed so far for Σ include the
Hartree-Fock (HF), the GW, and the second Born approx-
imation [79]. Expanding the equation of motion in compo-
nent Green’s functions for different parts of the contour,
and employing the Langreth rules [30] to convert integrals
containing the product of functions on the contour to in-
tegrals on the real time axis, equation (43) is converted
to multiple dynamical equations, called the KBEs. The
KBEs describe the flow of the non-equilibrium Green’s
functions defined on different tracks of the Keldysh con-
tour, including the retarded, advanced, lesser, greater,
mixed vertical, and Matsubara Green’s functions [79].
For example, the KBE for the lesser Green’s function
reads [79]:

i∂tG
<(t, t′) = hHF(t)G<(t, t′) + I<

KBE[Σ](t, t′) (44)

where we suppressed the coordinates and introduced the
HF Hamiltonian hHF and the scattering integral I<

KBE[Σ],
which is a functional of the self-energy (for details, see
Ref. [79]). A full set of KBEs can be derived for the other
relevant non-equilibrium Green’s functions [79].

For a specific self-energy approximation, the KBEs
together with the initial conditions fully determine the
non-equilibrium Green’s functions at all times. Solving
the KBEs in turn yields, through the non-equilibrium
Green’s functions, the dynamical quantities of interest
including the electron and phonon time-dependent pop-
ulations. In practice, solving the KBEs is computation-
ally expensive because it requires time-stepping the non-
equilibrium Green’s functions using the two times t and t′
on the real axis. The presence of two times stems from
the presence of memory effects and coherence in the KBEs,
but makes the method computationally expensive and lim-
its the longest timescales that can be accessed. A first
principles implementation, for example with a plane-wave
basis set, would make the challenges related to computa-
tional cost even more severe. On the other hand, because
the two-time KBEs can include coherent effects, they have
the potential to describe physics beyond the Fermi liquid
theory approximation. Recently, Sangalli et al. [54,81] de-
veloped and applied a first-principles version of the KBEs
that employs the so-called completed collision approxima-
tion to reduce the non-equilibrium Green’s function dy-
namics to one time variable. The formalism employs the
dynamical RPA dielectric screening together with ab ini-
tio e-ph and e-e scattering rates. Their method, together
with other first-principles implementations of the KBEs
currently investigated by several groups, have the poten-
tial to become accurate tools to study electron and phonon
dynamics in materials.

4.3 Electron and phonon transport

First-principles calculations enable understanding of dy-
namical and transport processes with unprecedented mi-
croscopic detail, thus complementing experiment and
guiding the development of novel technologies. Transport
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Fig. 2. (a) Electron-phonon RTs, in fs units, mapped on the Fermi surface of Cu (source: Ref. [37]). The plot highlights the
significant variation and k-dependence of the RTs for electronic states participating to transport. (b) Mean free paths for holes
in Si, computed for three high-symmetry crystallographic directions (source: Ref. [33]). The computed MFPs are in very good
agreement with recent experiments [98]. Note that the curves combine data from multiple bands, and that the energy zero is the
valence band maximum. (c) Relaxation times of electrons in GaAs, resolved for different conduction band valleys using fine BZ
grids (source: Ref. [34]). The inset shows a schematic of the conduction band valleys in GaAs. The energy zero is the conduction
band minimum.

calculations are being actively investigated in the elec-
tronic structure community as they constitute at present
an important missing link between ab initio microscopic
and device-scale models. For example, the electrical con-
ductivity σ and charge mobility μ can be computed from
first principles within the RTA [2,82]:

σαβ = e2
∑

nk

τnk(vnk)α(vnk)β (−∂f/∂E) (45)

where (vnk)α is the αth component of the band velocity
for the Bloch state |nk〉, obtained from DFT or GW band-
structures, τnk are carrier RTs, and f is the Fermi-Dirac
distribution. The mobility μ can be obtained from the
conductivity using μ = σ/(ec), where c is the carrier con-
centration and σ the direction-averaged conductivity. By
varying the chemical potential, both the electron and hole
mobilities can be computed as a function of temperature.

In state-of-the-art calculations, σ in equation (45) is
evaluated by interpolating the bandstructure to obtain
the band velocities on fine BZ grids, and computing the
RTs for scattering with phonons. This approach yields the
phonon-limited conductivity, which constitutes an upper
limit for the conductivity in relatively pure crystalline ma-
terials at room temperature. Scattering with defects, both
elastic [83] and inelastic [84], is important in many cases of
practical relevance and has also been computed ab initio,
though work in this area is still in its nascent stage.

The BoltzWann [82] and BoltzTrap [85] codes im-
plement conductivity and mobility calculations, and can
interpolate the bandstructure with maximally localized
Wannier functions [43] and Fourier interpolation, respec-
tively. The state-dependent RTs in equation (45) are often
approximated as a constant or a slowly varying function
of energy within the energy window of relevance for trans-
port (a few kBT around the Fermi energy). When the con-

stant RT is used as a fitting parameter or extracted from
experiment, the calculation should be considered semi-
empirical rather than ab initio. First-principles calcula-
tions of the RTs we recently developed [33–35,37] reveal
a non-trivial dependence of the RTs on band and k-point
(see Fig. 2a), which is not captured by the constant RT
approximation and improves the agreement of the com-
puted conductivity with experiment [37]. For example, we
recently employed first-principles calculations with state-
dependent RTs to compute the room temperature resis-
tivity of the three noble metals Cu, Ag, and Au, and ob-
tained agreement within 5% of experiment [37]. This work
further showed that the e-ph relaxation times vary signif-
icantly on the Fermi surface (e.g., by up to a factor of 3
in Cu, as shown in Fig. 2a), contrary to the conventional
wisdom that constant RTs are a good approximation in
metals. The RTs were found to correlate with the Fermi
surface topology and the orbital character of the electronic
states [37]. In semiconductors with multiple conduction
band valleys, the use of state-dependent RTs is crucial, as
shown by our recent work where we computed the conduc-
tivity of GaAs at 250–500 K, achieving excellent agree-
ment with experiment [86]. Due to computational cost,
transport calculations with ab initio state-dependent RTs
have so far focused on materials with simple unit cells;
research efforts to compute RTs and transport in larger
system are underway. For organic materials and correlated
oxides, first-principles calculations of carrier mobility are
still very challenging. The narrow width of the electronic
bands induces strong e-ph coupling in these materials.
The charge carriers become localized and strongly cou-
pled with the lattice, forming so-called polarons. Trans-
port in organic materials and correlated oxides is typi-
cally described as a hopping process of localized polarons,
leading to a peculiar temperature dependence of the mo-
bility. Boltzmann transport theory (e.g., Eq. (45)) cannot

http://www.epj.org


Page 12 of 15 Eur. Phys. J. B (2016) 89: 239

be applied to compute the conductivity due to the local-
ized nature of the carriers, and the e-ph interaction cannot
be treated perturbatively. Novel approaches to treat po-
larons are being investigated, and ab initio transport cal-
culations in organic semiconductors and correlated oxides
are a rapidly growing field.

The carrier diffusion length, namely the distance carri-
ers travel before recombining, is one of the most important
parameters in applications. It is crucial, for example, to
design efficient photovoltaic [87] and photoelectrochem-
ical active layers. The diffusion length can in principle
be obtained from first principles by calculating both the
carrier mobility and the recombination lifetimes due to
radiative [88] and non-radiative [84] processes. However,
such diffusion length calculations are still nearly absent
in the literature, mainly due to the challenge of selecting
which recombination mechanisms to include among many
possible options. Computing and validating carrier recom-
bination lifetimes remains an open challenge in the field.

Auger processes are perhaps one of the most widely
studied recombination mechanisms from first principles,
especially in simple elemental and III−V semiconduc-
tors [52,58,59,61]. Two areas of recent focus are Auger
recombination in GaN and related compounds employed
in lighting [58,59,61] and Auger scattering in ionic crystals
for scintillators [89]. Despite the exciting progress, Auger
processes are still complex to compute accurately; since
they can be mediated by the Coulomb interaction alone
or be phonon or defect assisted, the interactions to include
in Auger calculations are challenging to establish a priori.
In addition, measuring Auger rates experimentally is dif-
ficult, and validating the calculations is still non-trivial.

The thermal conductivity of solids due to both elec-
trons and phonons, a central quantity in heat transport,
can be computed from first principles using the ph-ph and
ph-el RTs given above. We touch on this topic only very
briefly. Solving the phonon BTE within the RTA provides
the lattice thermal conductivity tensor κ [3]:

καβ =
�

2

NVuckBT 2

∑

νq

(vνq)α(vνq)βω
2
νqNνq(Nνq + 1)τνq

(46)
where the phonon velocities vνq and the RTs can be com-
puted from first principles. For cases in which both the
ph-ph and ph-e interactions are important, the respective
RTs are combined using Matthiessen’s rule [2], i.e., the
scattering rates for the different processes are summed to
obtain the total scattering rate.

In thermal transport, the ph-ph scattering processes
are typically divided into normal (N) and Umklapp (U);
isotopic phonon scattering can also be included [3,90,91].
For N processes, all three phonon momenta belong to the
first BZ, whereas in U processes the sum of the three mo-
menta equals a reciprocal lattice vector. Such distinction
is key for heat transport, since N processes do not dis-
sipate heat current as a consequence of energy and mo-
mentum conservation, while U processes result in heat
current dissipation. The thermal conductivity computed
with state-dependent RTs in equation (46) is usually in

good agreement with experiment [3]. Iterative solution of
the phonon BTE (see Refs. [73,75]) typically improves
agreement with experiment, and is necessary for quan-
titative accuracy in some materials [91]. For example,
when N scattering processes are strong, as is the case
in two-dimensional materials [91], the RTA breaks down
as it treats both N and U processes as dissipative; iter-
ative solution of BTE is required in these cases to accu-
rately compute the thermal conductivity. Recent calcula-
tions have combined ph-e and ph-ph RTs to include the
effect of electrons on phonon dynamics, e.g., to investi-
gate transport in graphene [69] and silicon [92]. For exam-
ple, combining ph-ph and ph-e scattering, Liao et al. [92]
recently showed a 45% decrease of thermal conductivity
due to ph-e scattering in highly doped silicon, an im-
portant result for thermoelectrics considering that ph-e
scattering was previously thought to be negligible. First-
principles thermal transport computations are providing
unprecedented insight into phonon RTs [3,90,91] and dy-
namics [93,94]. New design rules for materials with high or
low thermal transport are being investigated, with the po-
tential to greatly advance applications in electronics and
thermoelectrics [95,96].

4.4 Excited carrier dynamics

The computational framework presented in this article en-
ables novel studies of excited carrier dynamics, a topic
of particular relevance given the recent experimental ad-
vances in ultrafast laser spectroscopy. This section focuses
on recent work by the author on ultrafast dynamics and
hot carriers (HCs), namely, excited carriers with excess
energy with respect to the band edges. HCs are found in
many electronic and optoelectronic devices [61,97]. They
are an important source of energy loss in solar cells [33,87],
where collecting HCs before they equilibrate with the lat-
tice could greatly enhance the power conversion efficiency.
For the case of Si under standard solar illumination, nearly
25% of incident solar energy is lost to heat as the HCs
generated by sunlight absorption thermalize to the band
edges. Experimentally, this thermalization process is dif-
ficult to control and understand with microscopic detail
due to the sub-ps time scale involved.

We recently studied HCs in solar cells by combin-
ing first-principles calculations of e-ph and e-e scattering
with the electron BTE [33]. We demonstrated that a HC
distribution characteristic of Si under solar illumination
thermalizes within 350 fs, in excellent agreement with
pump-probe experiments [33]. The work further employed
first-principles calculations to study the so-called ballistic
mean free paths (MFPs) − namely, the average distances
traveled by carriers before losing energy through phonon
emission − in semiconductors [33] and metals [35]. The
MFPs define the limit thickness to extract HCs in a de-
vice before they equilibrate with the lattice, a process with
potential to increase the energy conversion efficiency in
photovoltaic [87] and photoelectrochemical devices. The
MFPs for different crystallographic directions can be com-
puted as the product of the band velocity and the RT,

http://www.epj.org


Eur. Phys. J. B (2016) 89: 239 Page 13 of 15

namely, Lnk = (vnk · k̂) τnk, where the unit crystal mo-
mentum vector k̂ is oriented along the ballistic propaga-
tion direction. Our computed MFPs in Si (see Fig. 2b)
are of order 10−15 nm for both electrons and holes [33],
in excellent agreement with recent scanning tunneling mi-
croscopy experiments [98]. The MFPs computed for noble
metals such as Au and Ag show a volcano trend as a func-
tion of energy [35], with maximum MFPs of 15−30 nm
near the Fermi energy, which rapidly degrade to ∼5 nm
for HCs with energies of a few eV above or below the Fermi
energy. These trends suggest that extracting HCs with a
few eV excess energy may require very thin metallic lay-
ers or nanostructures. At metal-semiconductor interfaces,
HC extraction may be challenging due to the presence of a
disordered interface layer with thickness comparable with
the MFPs.

We additionally investigated the e-ph RTs of HCs in
GaAs [34], focusing on excited electrons occupying the Γ ,
L, and X conduction valleys (see Fig. 2c). Our first-
principles e-ph scattering rates in GaAs are in excellent
agreement with values obtained from transport data [34].
These calculations also contributed to resolve a contro-
versy in the interpretation of ultrafast optical experiments
in GaAs, demonstrating unambiguously that the tens of
femtoseconds decay times observed experimentally for ex-
cited electrons arise from e-ph scattering (see Fig. 2c). We
additionally showed that the conventional wisdom that ex-
cited carriers equilibrate chiefly by emitting longitudinal
optical (LO) phonons needs to be revisited. This widely
adopted picture is based on the notion that the Fröhlich
interaction, which couples electrons to the polar LO mode
with an e-ph matrix element g(q)∝1/q (q is the absolute
value of the phonon wavevector), dominates in materials
with polar bonds such as GaAs. However, the Fröhlich
interaction is mainly active near the band edges, where
intraband scattering with small transferred momentum q
prevails [86]. At higher carrier energies where interband
transitions dominate the phase space, we found in GaAs
and several other polar materials that acoustic phonon
emission is the dominant mechanism for HC energy loss,
and that in general multiple phonon modes contribute
substantially to energy dissipation [34,86]. The ability to
resolve the contribution to carrier dynamics of different
phonon modes is truly unique to first-principles calcula-
tions, which can greatly extend the scope of ultrafast ex-
periments by providing microscopic insight.

Finally, recent advances in first-principles dynamics
using the KBE [54,81] enable studies that are not possible
with the BTE. For example, including the light pulse in
the dynamical equations while coherently propagating the
carriers is crucial to model experiments in which the pulse
duration is of the same order of magnitude (e.g., ∼100 fs)
as the dynamics of interest. The KBE approach further
enables studies of carrier dynamics under relatively high
laser intensities, for which the RTA breaks down due to
lack of energy and carrier number conservation. We note
that even advanced treatments such as the KBE currently
rely on perturbation theory with fixed nuclei positions.
However, treating the nuclei as fixed is a severe approx-

imation for a material irradiated by intense laser light.
Extensions will be necessary to properly include nuclear
dynamics in perturbative approaches such as the BTE
and KBE. Real-time time-dependent DFT [21], on the
other hand, allows for nuclear motion through a variety
of schemes, and remains at present the tool of choice to
model materials irradiated by intense lasers. Due to recent
advances in materials spectroscopy with lasers of ever-
increasing intensities and frequency ranges, as exemplified
by the advent of free-electron lasers [18], the boundary be-
tween different spectroscopy communities is blurring. As a
result, new opportunities arise for first-principles calcula-
tions to contribute to the future of ultrafast spectroscopy.

5 Conclusion

First principles calculations of carrier and phonon dynam-
ics are emerging as rigorous extensions of the ground-
state DFT and excited-state GW-BSE methods. They
can tackle fundamental problems in solid-state physics
and contribute to developing novel technological appli-
cations, thus redefining the boundaries of ab initio theo-
ries. Looking forward, the unique insight of first-principles
calculations will be instrumental in microscopically inter-
preting increasingly complex spectroscopy and transport
experiments. In turn, understanding electron, phonon, and
spin dynamics with microscopic detail will fuel the de-
velopment of novel electronics, renewable energy devices,
and spectroscopy techniques. The next decade of first-
principles calculations will be at the heart of these exciting
developments.
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fund from the California Institute of Technology.

References

1. J.M. Ziman, Electrons and Phonons (Oxford University
Press, 1960)

2. G.D. Mahan, Condensed Matter in a Nutshell (Princeton
University Press, 2010)

3. D. Broido, M. Malorny, G. Birner, N. Mingo, D. Stewart,
Appl. Phys. Lett. 91, 231922 (2007)

4. M. Zebarjadi, K. Esfarjani, M. Dresselhaus, Z. Ren,
G. Chen, Energy Environ. Sci. 5, 5147 (2012)

5. E.F. Schubert, T. Gessmann, J.K. Kim, Light Emitting
Diodes (Wiley Online Library, 2005)

6. A.M. Stoneham, Rep. Prog. Phys. 44, 1251 (1981)
7. P.T. Landsberg, Phys. Stat. Sol. B 41, 457 (1970)
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