2015 Impact factor 1.223
Condensed Matter and Complex Systems

EPJ Plus Highlight - Improving safety of neutron sources

Sampling of Lead-Bismuth-eutectic material/cover gas-interface sample consisting of solid material forming a powdery crust onto the steel wall.

Testing liquid metals as target material bombarded by high-energy particles

There is a growing interest in the scientific community in a type of high-power neutron source that is created via a process referred to as spallation. This process involves accelerating high-energy protons towards a liquid metal target made of material with a heavy nucleus. The issue here is that scientists do not always understand the mechanism of residue nuclei production, which can only be identified using spectrometry methods to detect their radioactive emissions. In a new study examining the radionuclide content of Lead-Bismuth-eutectic (LBE) targets, scientists at the Paul Scherrer Institute Villigen (PSI) found that some of the radionuclides do not necessarily remain dissolved in the irradiated targets. Instead, they can be depleted in the bulk LBE material and accumulate on the target's internal surfaces. These findings have recently been published in EPJ Plus by Bernadette Hammer-Rotzler affiliated with the PSI and the University of Bern, Switzerland, and colleagues from Switzerland, France and Sweden. The results improve our understanding of nuclear data related to the radionuclides stemming from high-power targets in spallation neutron sources. They contribute to improving the risk assessment of future high-power spallation neutron beam facilities --including, among others, the risk of erroneous evaluation of radiation dose rates.

Read more...

EPJ C Highlight - Better defining the signals left by as-yet-undefined dark matter at the LHC

alt
Schematic of an Effective Field Theory interaction between dark matter and the standard model.

New theoretical models that better describe the interaction between dark matter and ordinary particles advance the quest for dark matter

In the quest for dark matter, physicists rely on particle colliders such as the LHC in CERN, located near Geneva, Switzerland. The trouble is: physicists still don't exactly know what dark matter is. Indeed, they can only see its effect in the form of gravity. Until now, theoretical physicists have used models based on a simple, abstract description of the interaction between dark matter and ordinary particles, such as the Effective Field Theories (EFTs). However, until we observe dark matter, it is impossible to know whether or not these models neglect some key signals. Now, the high energy physics community has come together to develop a set of simplified models, which retain the elegance of EFT-style models yet provide a better description of the signals of dark matter, at the LHC. These developments are described in a review published in EPJ C by Andrea De Simone and Thomas Jacques from the International School for Advanced Studies SISSA, in Trieste, Italy.

Read more...

EPJ E Highlight - Asymmetrical magnetic microbeads transform into micro-robots

alt
Transformation of particle clusters while exposed to an oscillating external magnetic field.

Thanks to the ordering effects of two-faced magnetic beads, they can be turned into useful tools controlled by a changing external magnetic field

Janus was a Roman god with two distinct faces. Thousands of years later, he inspired material scientists working on asymmetrical microscopic spheres - with both a magnetic and a non-magnetic half - called Janus particles. Instead of behaving like normal magnetic beads, with opposite poles attracting, Janus particle assemblies look as if poles of the same type attract each other. A new study reveals that the dynamics of such assemblies can be predicted by modelling the interaction of only two particles and simply taking into account their magnetic asymmetry. These findings were recently published in EPJ E by Gabi Steinbach from the Chemnitz University of Technology, Germany, and colleagues at the Helmholtz-Zentrum Dresden-Rossendorf. It is part of a topical issue entitled "Nonequilibrium Collective Dynamics in Condensed and Biological Matter." The observed effects were exploited in a lab-on-a-chip application in which microscopic systems perform tasks in response to a changing external magnetic field.

Read more...

Editors-in-Chief
P. Hänggi and A. Rubio
Thank you for the very fruitful and efficient collaboration. It has been a pleasure!!

Paul van Loosdrecht, Guest Editor Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials, 2013

ISSN (Print Edition): 1434-6028
ISSN (Electronic Edition): 1434-6036

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag

Conference announcements

No conferences to be advertised here for the moment.