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Abstract. A complete set of linearly independent observables in Compton scattering with arbitrarily po-
larised real photons off an arbitrarily polarised spin-1 target is introduced, for the case that the final-state
polarisations are not measured. Adopted from the one widely used, e.g., in deuteron photo-dissociation,
it consists of 18 terms: the unpolarised cross section, the beam asymmetry, 4 target asymmetries and 12
asymmetries in which both beam and target are polarised. They are expressed by the helicity amplitudes
and —where available— related to observables discussed by other authors. As application to deuteron
Compton scattering, their dependence on the (isoscalar) scalar and spin dipole polarisabilities of the nu-
cleon is explored in Chiral Effective Field Theory with dynamical Δ(1232) degrees of freedom at order
e2δ3. Some asymmetries are sensitive to only one or two dipole polarisabilities, making them particularly
attractive for experimental studies. At a photon energy of 100MeV, a set of 5 observables is identified
from which one may be able to extract the spin polarisabilities of the nucleon. These are experimentally
realistic but challenging and mostly involve tensor-polarised deuterons. Relative to Compton scattering
from a nucleon, sensitivity to the “mixed” spin polarisabilities γE1M2 and γM1E2 is increased because
of the interference with the D wave component of the deuteron and with its pion-exchange current. An
interactive Mathematica 9.0 notebook with results for all observables at photon energies up to 120MeV is
available from hgrie@gwu.edu.

1 Introduction

Compton scattering γX → γX at energies below 1GeV ex-
plores the two-photon response of the internal low-energy
degrees of freedom in the nucleon and in the lightest nu-
clei. Since the electric and magnetic fields of a real photon
induce radiation multipoles by displacing the charged con-
stituents and currents in the target, energy-dependence
and multipolarity of the emitted radiation test the sym-
metries and strengths of the interactions between and with
them; see a recent review for details [1]. In deuteron Comp-
ton scattering, one has access not only to the proton and
neutron response, but also to how photons couple to the
charged pion-exchange currents, thus testing nuclear bind-
ing in the simplest stable few-nucleon system. In addition,
the constructive interference with the D wave component
of the deuteron can be expected to lead to increased sen-
sitivity of the hadronic response to the quadrupole com-
ponents of the photon fields.

a e-mail: hgrie@gwu.edu
b Permanent address.

A new generation of high-luminosity facilities like
HIγS, MAMI and MAX-Lab with near-100% linear or
circular beam polarisation have started to explore these
opportunities. Dense deuteron targets with vector polar-
isations approaching 90% are standard. Since tensor and
vector polarisations are related when in thermal equilib-
rium with a solid lattice, most vector-polarised deuteron
targets automatically also provide tensor polarisation de-
grees of � 75% —and the potential for greater values in
dedicated set-ups [2–4].

Now is thus an opportune moment for a comprehen-
sive classification of independent deuteron amplitudes and
observables. The spin-1

2 case has been discussed by Ba-
busci et al. [5]. For the deuteron, Chen, Ji and Li [6] con-
structed a basis for those 12 amplitudes which remain
linearly independent after parity and time-reversal in-
variance have been invoked on the [2(photon helicities) ×
3(deuteron helicities)]2 (both in- and out-state) = 36 he-
licity amplitudes. However, a corresponding list of 23 in-
dependent observables (12 complex amplitudes minus an
overall phase) is missing. While several single- and double-
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polarisation observables have been constructed and their
sensitivity to the nucleon polarisabilities explored [6–10],
no systematic study of vector and tensor polarisation ob-
servables exists. Only one tensor observable has been con-
sidered explicitly, namely for an unpolarised beam [11–13].
What is more, some deuteron “vector” observables which
were defined analogous to the spin-1

2 case will be shown to
actually receive contributions from both vector and tensor
polarisations.

For the case that the polarisations of the final state
are not detected, this work aims to classify all 18 inde-
pendent observables and their relation to the helicity am-
plitudes. At present, this seems to be the experimentally
most feasible situation. Instead of simply extending the
work by Babusci et al. to the spin-1 case, the starting
point is the most general cross section of an arbitrarily
polarised photon beam on an arbitrarily polarised spin-1
target, in a form which is well known, e.g., from deuteron
photo-disintegration [14]. It is parametrised in terms of
the unpolarised cross section, 1 beam and 4 target asym-
metries as well as 12 double asymmetries, and has the
added benefit that experiments in less-than-ideal settings
can easily be described as well, like when residual or mixed
target and beam polarisations exist. A future publication
will define and study 5 additional independent polarisa-
tion transfer observables [15]. A complete set of indepen-
dent Compton scattering observables will then be avail-
able from which the 23 real parameters which characterise
deuteron Compton scattering (i.e. its independent ampli-
tudes) can be reconstructed in full.

The second part of this article explores the sensitiv-
ity of the 18 observables to the two-photon response of
the individual nucleon. Remember that the proportional-
ity constants between the electric or magnetic field of the
incident photon and the radiation multipoles induced in
each nucleon are the energy-dependent (dynamical) po-
larisabilities of the nucleon [16,17]. They parametrise the
stiffness of the nucleon N (spin �σ

2 ) against transitions
Xl → Y l′ of definite photon multipolarity at frequency
ω (l′ = l ± {0; 1}; X,Y = E,M ; Tij = 1

2 (∂iTj + ∂jTi);
T = E,B); see, e.g., [1,18] and references therein. Rewrit-
ten as point-like interactions between photons and nucle-
ons, the terms which contain photon dipoles read

2π N†
[
αE1(ω) �E2 + βM1(ω) �B2 + γE1E1(ω)�σ · ( �E × �̇E )

+γM1M1(ω)�σ · ( �B × �̇B ) − 2γM1E2(ω)σi Bj Eij

+2γE1M2(ω)σi Ej Bij + . . .
]
N. (1)

Since each interaction with a photon leaves a unique signal
in such dispersive effects, Compton scattering allows one
to study the symmetries and dynamics of the hadronic
constituents in detail.

The zero-energy values, αE1 := αE1(ω = 0) etc.,
are often quoted as “the (static) polarisabilities”. Two
scalar polarisabilities αE1(ω) and βM1(ω) parametrise
electric and magnetic dipole transitions. The four dipole
spin polarisabilities γE1E1(ω), γM1M1(ω), γE1M2(ω) and

γM1E2(ω) encode the response of the nucleon spin-
structure. These are particularly interesting since, intu-
itively interpreted, they parametrise the bi-refringence
which the electromagnetic field associated with the spin
degrees causes in the nucleon, in analogy to the classical
Faraday-effect [18]. The information accessible in Comp-
ton scattering thus goes well beyond that in tests of the
one-photon response, e.g., in form factor experiments.

Theoretical input is of course needed to carefully evalu-
ate data consistency in one model-independent framework
for hidden systematic errors; to identify the underlying
mechanisms using minimal theoretical bias, like the de-
tailed chiral dynamics of the pion cloud and of the Δ(1232)
as the lowest nucleon resonance; and, most importantly,
to explain how these findings emerge from QCD by re-
lating to emerging lattice simulations (see the most re-
cent papers [19–21]). The polarisabilities also enter as one
of the biggest sources of uncertainties in theoretical de-
terminations of the proton-neutron mass shift (see, e.g.,
the most recently published [22]) and of the two-photon-
exchange contribution to the Lamb shift in muonic hydro-
gen [23–25]. While presumably not providing a solution
to the proton-charge-radius puzzle, they also contribute
in radiative corrections to this process, see, e.g., [26]. For
all these goals, Chiral Effective Field Theory (χEFT), the
low-energy theory of QCD and extension of Chiral Per-
turbation Theory to few-nucleon systems, adds objective
estimates of the theoretical uncertainties. Indeed, χEFT
has been particularly successful in describing proton and
few-nucleon Compton scattering, starting with the first
calculation and sensitivity study of the scalar polarisabil-
ities in χEFT [27,28]. Reference [1] contains details on its
history and status in Compton scattering, as well as on
χEFT variants not discussed here.

Having established a consistent database from all avail-
able proton and deuteron data below 350MeV in ref. [1],
the static scalar polarisabilities of the proton were recently
extracted in this framework with a χ2 per degree of free-
dom of 113/135 [29]:

α
(p)
E1 = 10.7 ± 0.3(stat) ± 0.2(Baldin) ± 0.3(theory)

β
(p)
M1 = 3.1 ∓ 0.3(stat) ± 0.2(Baldin) ∓ 0.3(theory). (2)

Throughout, polarisabilities without superscripts denote
isoscalar quantities, and the canonical units of 10−4 fm3

for scalar and 10−4 fm4 for spin dipole polarisabilities are
understood.

Since the deuteron is isoscalar, the elastic scattering
on it provides of course only access to the isoscalar (aver-
age) nucleon polarisabilities. In ref. [1], these were found
to have much larger errors since deuteron data is less ac-
curate and more scarce (with χ2/d.o.f. = 24/25):

αE1 = 10.9 ± 0.9(stat) ± 0.2(Baldin) ± 0.8(theory)

βM1 = 3.6 ∓ 0.9(stat) ± 0.2(Baldin) ∓ 0.8(theory). (3)

These results were derived using the Baldin sum rules,
whose isoscalar variant reads [1]

αE1 + βM1 = 14.5 ± 0.3. (4)
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These publications also discuss in detail the fit procedure
and residual theoretical uncertainties. Comparing eqs. (2)
and (3) shows that within the data-dominated error, the
two-photon responses of the proton and neutron as para-
metrised by the scalar polarisabilities are identical. A
particularly interesting prediction of χEFT is that small
proton-neutron differences stem from chiral–symmetry-
breaking interactions with and in the pion cloud around
the nucleon, probing details of QCD. Experiments are
therefore underway and planned to improve the Compton
scattering database; see, e.g., [1] for details. Their other
focus are the spin polarisabilities. Only the linear com-
binations γ0 and γπ of scattering under 0◦ and 180◦ are
somewhat constrained by data or phenomenology. Con-
flicting results from MAMI and LEGS exist for the pro-
ton, and large error bars are found for the neutron [30].
The isoscalar values are in the range (see also [10])

γ0 := −γE1E1 − γM1M1 − γE1M2 − γM1E2 ≈ 0,

γπ := −γE1E1 + γM1M1 − γE1M2 + γM1E2

≈ [5 . . . 15]. (5)

A comprehensive classification of independent amplitudes
and observables is thus warranted, including a detailed
study of dependencies on scalar and spin polarisabilities.
Insofar, this publication extends the so-far most thorough
work in ref. [10], including its erratum.

After defining the most general cross section without
detection of the polarisations of the final state in sub-
sect. 2.2, the remainder of sect. 2 is devoted to the more
technical issues of relating its observables to the helicity
amplitudes of deuteron Compton scattering and to other
parameter combinations found in the literature, including
the Babusci classification. Section 3 discusses the sensitiv-
ity of the observables to the dipole polarisabilities, with
an eye towards potential experiments. It also proposes
a road-map to the isoscalar, spin-independent and spin-
dependent nucleon polarisabilities from high-accuracy ex-
periments with deuteron targets. A customary summary
in sect. 4 rounds off the article. Preliminary results were
presented in a recent proceeding [31].

2 Constructing observables

2.1 Kinematics and polarisation states

This presentation follows the reviews of Arenhövel and
Sanzone [14], and Paetz [2]. Inspired by the former, the
kinematics is pictorially represented in fig. 1. The photon
beam polarisation is described by a density matrix with
entries

(ρ(γ))λλ′ := 〈λ′|ρ(γ)|λ〉

=
1
2

[
δλλ′(1+λP

(γ)
circ) − δλ,−λ′ P

(γ)
lin e−2λiϕlin

]
.

(6)

Here, P
(γ)
circ ∈ [−1; 1] is the degree of right circular polarisa-

tion, i.e. the difference between right and left circular po-
larisation, with P

(γ)
circ = +1/−1 describing a fully right/left

ϕlin

d

k k '

ϕd

ϑd

x

∋

z
θ

Fig. 1. (Colour on-line) Kinematics of deuteron Compton scat-
tering: incoming photon along the z-axis, linearly polarised at
an angle ϕlin relative to the scattering plane (xz-plane); scat-

tering angle θ; deuteron polarisation axis �d with azimuthal an-
gle ϑd from the z-axis to �d, and polar angle ϕd from the x-axis
to the projection of �d onto the xy-plane; y-axis the normal
of the scattering plane; �k (�k′) the momentum of the incident
(outgoing) photon.

circularly polarised photon (positive/negative helicities
λ, λ′ = ± by �e± = − i√

2
(�ey ± i�ex)). The degree of linear

polarisation is parametrised by P
(γ)
lin ∈ [0; 1], with ϕlin ∈

[0;π[ the angle from the x-axis to the polarisation plane1,
i.e. a photon polarisation �εlin = �ex cos ϕlin + �ey sinϕlin.

Today’s deuteron targets are both vector- and tensor-
polarised along the same axis [2]. Let the axis �d in which
ρ(d) is diagonal be oriented as in fig. 1, i.e.2

�d =

⎛
⎝

sin ϑd cos ϕd

sinϑd sin ϕd

cos ϑd

⎞
⎠ , (7)

with azimuthal angle ϑd ∈ [0;π] and polar angle ϕd ∈
[0; 2π]. The entries of the polarisation density matrix are
then in the basis M�d = (1; 0;−1) of magnetic quantum
numbers along �d:

ρ
(d)
�d

=
1
3

⎡
⎣P

(d)
0 1 +

√
3
2

P
(d)
1

⎛
⎝

1 0 0
0 0 0
0 0 −1

⎞
⎠

+
1√
2

P
(d)
2

⎛
⎝

1 0 0
0 −2 0
0 0 1

⎞
⎠

⎤
⎦ . (8)

The subscript denotes of course that the system is quan-
tised along the �d-axis, not the z-axis, and is kept for
comparison with the literature [2, 14]. Here, P

(d)
0 := 1

parametrises the part of the deuteron density matrix
which behaves like a scalar under rotations, while P

(d)
1 and

P
(d)
2 characterise the parts which transform like an (irre-

ducible) spherical vector and tensor operator, respectively.
1 This definition varies from that of [14], whose angle φ is

counted from the polarisation plane to the normal of the scat-
tering plane, i.e. ϕlin = −φ.

2 This definition varies from that of [14], whose angles are
defined as φd − φ = ϕd, but still θd = ϑd.
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These can be related to the degrees of vector and tensor
polarisation in Cartesian coordinates: along this quantisa-
tion axis, a fraction 1 ≥ p±,0 ≥ 0 populates the state with
magnetic quantum number M�d = ±1, 0. The overall norm
is p+ +p− +p0 = 1. The degree of vector polarisation is in

Cartesian coordinates Pz = p+ − p− =
√

2
3 P

(d)
1 ∈ [−1; 1],

and that of tensor polarisation is Pzz = p+ + p− − 2p0 =
1 − 3p0 =

√
2 P

(d)
2 ∈ [1;−2]. Because p±,0 lies between

0 and 1, they are subject to the combined constraint
2
√

2 ≥ P
(d)
2 +

√
3 |P (d)

1 | ≥ −
√

2. When the deuteron spins
are in thermal equilibrium with a solid lattice, tensor and
vector polarisations are related by Pzz = 2 −

√
4 − 3P 2

z ,

i.e. P
(d)
2 =

√
2 −

√
2 − (P (d)

1 )2 [2, 3].
The advantage to decompose ρ(d) into irreducible rep-

resentations of the rotation group is that it is then par-
ticularly simple to change the quantisation axis from �d to

the beam axis �̂k := �k/ω ≡ �ez (cf. [32], subsect. 13). Ref-
erence [14] finally provides the angular momentum repre-
sentation of the spin-1 polarisation density matrix which
is diagonal along �d:

ρ
(d)
mm′ := 〈m′|ρ(d)|m〉 =

(−1)1−m

√
3

2∑
I=0

√
2I + 1 P

(d)
I

×
I∑

M=−I

(
1 1 I
m −m′ −M

)
eiMϕd dI

M0(ϑd). (9)

The conventions for 3j symbols and reduced Wigner-d ma-
trices are those of Rose [32] and Edmonds [33], also listed
in the Particle Data Booklet [34].

2.2 Parametrising the cross section

Like any reaction γd → X, deuteron Compton scattering
and deuteron photo-disintegration share the same in-state.
As long as the final-state polarisations are not detected
(i.e. are summed over), their differential cross sections
are thus characterised by the same dependence on the
initial-state deuteron and photon polarisations. One can
therefore adopt the decomposition familiar from deuteron
photo-disintegration [14] to Compton scattering:

dσ

dΩ
=

dσ

dΩ

∣∣∣∣
unpol

[
1 + Σlin(ω, θ)P

(γ)
lin cos 2ϕlin

+
∑

I=1,2
0≤M≤I

TIM (ω, θ)P
(d)
I dI

M0(ϑd) cos
[
Mϕd − π

2
δI1

]

+
∑

I=1,2
0≤M≤I

T circ
IM (ω, θ)P (d)

I dI
M0(ϑd)P (γ)

circ sin
[
Mϕd +

π

2
δI1

]

+
∑

I=1,2
−I≤M≤I

T lin
IM (ω, θ)P

(d)
I dI

M0(ϑd)

×P
(γ)
lin cos

[
Mϕd − 2ϕlin − π

2
δI1

] ]
. (10)

Besides the trivial limitations I ∈ {0; 1; 2} and |M | ≤ I,
the summations in eq. (10) are easily shown to be con-
strained by trivial zeros and double counting of angular
dependencies:
– T00 ≡ 1, i.e. the first factor in eq. (10) could also be

written as 1 ≡ T00 P
(d)
0 ;

– TIM = (−)I+M TI,−M , and in particular T10 ≡ 0;
– T circ

IM = (−)I+M+1 T circ
I,−M , and in particular T circ

00 ≡ 0
(the circular-beam asymmetry on an unpolarised tar-
get, identical zero due to rotation invariance) and
T circ

20 ≡ 0;
– T lin

00 ≡ Σlin.
The cross section is thus fully parametrised by the follow-
ing linearly independent functions:
– 1 differential cross section dσ

dΩ

∣∣
unpol

of unpolarised pho-
tons on an unpolarised target;

– 1 beam asymmetry of a linearly polarised beam on an
unpolarised target Σlin;

– 1 vector target asymmetry of an unpolarised beam T11;
– 3 tensor target asymmetries on an unpolarised beam

T2M , M = 0, 1, 2;
– 2 double asymmetries of circular photons on a vector

polarised target T circ
1M , M = 0, 1;

– 2 double asymmetries of circular photons on a tensor
polarised target T circ

2M , M = 1, 2;
– 3 double asymmetries of linear photons on a vector

target T lin
1M , M = 0,±1;

– 5 double asymmetries of linear photons on a tensor
target T lin

2M , M = 0,±1,±2.
Since these 18 real, independent functions of scattering
energy and angle are of course process-dependent, those
discussed in Compton scattering differ from those in,
e.g., deuteron photo-disintegration. The decomposition of
eq. (10) holds in any frame, but the functions are frame-
dependent. It also applies when the polarisation of the
target and/or scattered photon is detected in the final
state, without specifying the initial state. The 18 recoil
polarisations are thus identical to the functions above.

2.3 Matching helicity amplitudes to observables

Deuteron Compton scattering amplitudes T are usually
described in the helicity basis (dependencies on ω, θ and
other parameters are dropped for brevity in this section),

A
Mf λf

Miλi
:= 〈Mf , λf |T |Mi, λi〉, (11)

where λi/f =± is the circular polarisation of the initial/fi-
nal photon, and Mi/f ∈ {0;±1} is the magnetic quantum
number of the initial/final deuteron spin. In the following,
the indices and summations over the final-state polari-
sations are suppressed as self-understood, e.g., AMiλi

≡
A

Mf λf

Miλi
. In addition, it is convenient to introduce an ab-

breviation for the sum over all polarisations of the squared
amplitude

|A|2 :=
∑

Mi,λi

|AMiλi
|2 ≡

∑
Mf ,λf ;Mi,λi

|AMf λf

Miλi
|2. (12)
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The cross section of Compton scattering of a photon beam
with the density matrix ρ(γ) from a target with density
matrix ρ(d), without detection of the final state polarisa-
tions, is then

dσ

dΩ
= Φ2 tr[Tρ(d)ρ(γ)T †], (13)

where the trace is taken over the polarisation states and
Φ is the frame-dependent flux factor, e.g., in the centre-
of-mass and lab frames:

Φcm =
Md

4π

1
ωcm +

√
M2

d + ω2
cm

,

Φlab =
Md

4π

1
Md + ωlab(1 − cos θlab)

. (14)

Transformations between lab and cm kinematics are found
in a recent review ([1], sect. 2.3).

By inserting the density matrices of eqs. (6) and (9)
into eq. (13), one obtains the cross section in terms of the
amplitudes, as function of photon polarisations P

(γ)
circ and

P
(γ)
lin with polarisation angle ϕlin and deuteron polarisa-

tion P
(d)
I with orientation (ϑd, ϕd). The functional depen-

dence of the result on these parameters is easily matched
to the parametrisation in eq. (10). For the unpolarised
part, one finds, of course:

dσ

dΩ

∣∣∣∣
unpol

=
Φ2

6
|A|2. (15)

The asymmetries are then (these definitions obey the con-
straints discussed in sect. 2.2)

Σlin |A|2 = −
∑

Mi,λi

AMiλi
A∗

Mi,−λi
, (16)

TIM |A|2 =
√

3(2I + 1) iδI1
∑

Mi,M ′
i ,λi

(−)1−Mi

×
(

1 1 I
Mi −M ′

i −M

)
AMiλi

A∗
M ′

iλi
, (17)

T circ
IM |A|2 =

√
3(2I + 1) iδI2

∑
Mi,M ′

i ,λi

(−)1−Mi λi

×
(

1 1 I
Mi −M ′

i −M

)
AMiλi

A∗
M ′

iλi
, (18)

T lin
IM |A|2 =

√
3(2I + 1)

∑
Mi,M ′

i ,λi

(−)−Mi (iλi)
δI1 λM

i

×
(

1 1 I
Mi −M ′

i −λiM

)
AMiλi

A∗
M ′

i ,−λi
. (19)

These explicit forms can also be used to determine
which observables are nonzero only due to inelastici-
ties. Cross sections and, concurrently, the functions Σlin,
TIM , T

circ/lin
IM are of course real. The Compton amplitudes

AMiλi
are real below the first inelasticity, so that the oc-

currence of the imaginary unit in six of the observables in

eqs. (16) to (19) indicates that they are zero there, namely

below the first inelasticity:
T11 ≡ 0, T circ

2(1,2) ≡ 0, T lin
1(0,±1) ≡ 0. (20)

2.4 Complete experiments?

The deuteron Compton amplitude contains 2 independent
complex amplitudes for a scalar target, 4 more for a vec-
tor target, and 6 more for a tensor target (see, e.g., [6]).
How many and which of them are accessible with polarised
beam and/or target, but without measuring outgoing po-
larisations (or, by time-reversal invariance, vice versa)?
Those which cannot be determined must be probed in
polarisation transfer experiments. These are significantly
harder because of the difficulties to measure recoil and
scattered-photon polarisations.

As a warm-up, one could consider first the Compton
scattering below the first inelasticity, where all ampli-
tudes are real. This is however of limited use in deuteron
Compton scattering, where the first appreciable breakup
process, γd → pn, starts at a cm photon energy of
Bd = 2.225MeV, namely so low that the amplitudes have
significant imaginary parts in the experimentally interest-
ing region3. In contradistinction, the first appreciable in-
elasticity on the proton starts at the one-pion production
threshold.

Above the first inelasticity, 23 independent real ampli-
tudes exist, namely 3 for a scalar target (2 complex minus
an overall phase), 8 more for a vector target, and 12 more
for a tensor target. Since the 6 observables of eq. (20) are
nonzero there, one finds:
– For scalar targets, only 2 of 3 observables are acces-

sible, leaving 1 to be determined from a polarisation
transfer observable.

– For vector polarised targets, 6 of 8 observables are ac-
cessible, leaving 2 to be determined from polarisation
transfer observables.

– For tensor polarised targets, 10 of 12 observables are
accessible, leaving again 2 to be determined from po-
larisation transfer observables.

The 5 correlations between beam and recoiling target po-
larisation which are necessary for complete experiments on
the deuteron will be discussed in a future publication [15].

This concludes the classification itself; results in χEFT
will be presented in sect. 3.3.

2.5 Relation to other parametrisations

Since some observables in Compton scattering with vec-
tor and tensor polarised targets have been constructed

3 The first inelasticity opens at zero energy, with multiple
photons in the final state (γd → γγd, etc.), but is suppressed
by powers of α = 1/137 and hence does not significantly con-
tribute in experiments. It is not considered in today’s theoret-
ical descriptions, whose first inelasticity thus is the deuteron
breakup.
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before, it is appropriate to relate these to the classifica-
tion in eq. (10). Often, observables are expressed not in
terms of the degrees of deuteron vector and tensor polar-
isations, but via the occupation numbers p±,0 of a state
quantised along �d. From eq. (7), the density matrix of a
pure deuteron state |M�d〉 is

p± = 1: ρ
(d)
�d

= |M�d = ±1 〉〈M�d = ±1|

⇐⇒ P
(d)
1 = ±

√
3
2

and P
(d)
2 =

1√
2

p0 = 1: ρ
(d)
�d

= |M�d = 0 〉〈M�d = 0|

⇐⇒ P
(d)
1 = 0 and P

(d)
2 = −

√
2. (21)

2.5.1 Chen’s tensor-polarised cross section [11]

The first tensor observable was constructed by Chen [11],
and also used by Karakowski and Miller [12, 13]. His def-
inition of a cross section combination for an unpolarised
beam on a deuteron which is tensor polarised along the
z-axis translates into the observables of eq. (10) with
P

(γ)
circ = P

(γ)
lin = 0, ϑd = ϕd = 0 and eq. (21) into

dσ
[11]
2

dΩ
:=

1
4

[
2

dσ

dΩ
(Miz = 0) − dσ

dΩ
(Miz = 1)

− dσ

dΩ
(Miz =−1)

]
=− 3

2
√

2
T20

dσ

dΩ

∣∣∣∣
unpol

, (22)

where the subscript in Miz denotes that �d points along the
z-axis for the initial state. From now on, the bracketed
superscript of an observable indicates the bibliographic
reference from which the notation is taken verbatim.

This is the only tensor observable for which calcula-
tions exist, namely at 49 and 69MeV both by Chen and
by Karakowski and Miller. Nonetheless, these will not be
compared in detail with those of the χEFT approach taken
in sect. 3.3. Chen’s ones are derived in “pion-less” EFT,
i.e. for typical momenta well below the pion mass and typ-
ical photon energies ω � m2

π/M ≈ 20MeV [1]. These pre-
dictions are thus more of qualitative interest. Shape and
size of the angular dependence differ indeed considerably
from those presented later. Karakowski and Miller used an
approach similar to that which will be outlined in sect. 3.1,
but without a dynamical Δ(1232) and without some pion-
exchange diagrams dictated by chiral symmetry [12, 13].
Their results at 49 and 69MeV agree up to about 30% in
shape and magnitude with the ones presented below. The
difference does not stem from the Δ(1232), but may be at-
tributed to the fact that their photon-nucleon interaction
for rescattering terms is expanded only to first order, while
Hildebrandt et al. demonstrated that terms up to l = 2
should be kept for convergence [35,36]. Tensor observables
should be more susceptible to this difference.

2.5.2 Scalar and vector target observables by Babusci et
al. [5]

Babusci et al. [5] were the first to identify a complete set of
independent observables for Compton scattering, namely
for a spin-1

2 target. Their classification applies of course
also to a scalar- or vector-polarised deuteron target, pro-
vided one sets the tensor component to zero, P

(d)
2 ≡ 0. Fol-

lowing the discussion in sect. 2.1, this constrains |P (d)
1 | ≤√

2
3 , so the vector polarisation cannot reach the maximal

value of 1 allowed for a spin-1
2 target. While one should

be aware of this difference, we choose in the following to
quote results with a pretense value “P

(d)
1 = 1”. Those for

a deuteron target which is maximally vector polarised but
not tensor polarised are obtained from these by multiply-

ing the right-hand sides of eqs. (24)–(29) by
√

2
3 .

Experimentally, these observables are measured as
asymmetries between cross sections with different target
and beam polarisation angles (ϑd, ϕd;ϕlin), normalised to
their sum. The configurations are chosen such that their
cross sections sum to twice the total unpolarised cross sec-
tion.

Specifically, the beam asymmetry in refs. [5, 8–10] is
the difference of the cross sections of a linearly polarised
beam (P (γ)

lin = 1, P
(γ)
circ = 0) either in the scattering plane

(ϕlin = 0) or perpendicular to it (ϕlin = π/2) on an unpo-
larised target (P (d)

1 = P
(d)
2 = 0), normalised to their sum.

Inserting these choices into eq. (10) identifies

Σ
[5]
3 ≡Σ[8,9]≡Π lin [10] =

dσ
dΩ (ϕlin = 0) − dσ

dΩ (ϕlin = π
2 )

dσ
dΩ (ϕlin = 0) + dσ

dΩ (ϕlin = π
2 )

≡
(ϕlin = 0)−(ϕlin = π

2 )
(ϕlin = 0)+(ϕlin = π

2 )
≡

(ϕlin = 0)−(ϕlin = π
2 )

· + ·

= Σlin. (23)

For readability, the differential cross section symbol is
dropped in each term in the second line, and an abbre-
viation “· + ·” is introduced for a denominator which is
the sum, rather than the difference, of the terms in the
numerator. Not surprisingly, all definitions of the beam
asymmetry coincide.

The vector target asymmetry with unpolarised beam
(P (d)

1 = 1, P
(d)
2 = P

(γ)
circ = P

(γ)
lin = 0) translates as

Σ[5]
y =

(ϑd = π
2 , ϕd = +π

2 ) − (ϑd = π
2 , ϕd = −π

2 )
· + ·

= − 1√
2

T11, (24)

the vector target asymmetries with right circularly po-
larised beam (P (d)

1 = 1, P
(γ)
circ = 1, P

(d)
2 = P

(γ)
lin = 0) as

Σ
[5]
2x =

(ϑd = π
2 , ϕd = 0) − (ϑd = π

2 , ϕd = π)
· + ·

= − 1√
2

T circ
11 , (25)

Σ
[5]
2z =

(ϑd = 0) − (ϑd = π)
· + · = T circ

10 , (26)
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Σ
[5]
1x =

(ϑd = π
2
, ϕd = 0; ϕlin = +π

4
) − (π

2
, 0; ϕlin = −π

4
)

· + · =
1√
2

“

T lin
11 − T lin

1,−1

”

, (27)

Σ
[5]
1z =

(ϑd = 0; ϕlin = +π
4
) − (0; ϕlin = −π

4
)

· + · = −T lin
10 , (28)

Σ
[5]
3y =

[(ϑd = π
2
, ϕd = π

2
; ϕlin = 0) − (π

2
, π

2
; π

2
)] − [(π

2
,−π

2
; 0) − (π

2
,−π

2
; π

2
)]

[· + ·] + [· + ·] = − 1√
2

“

T lin
11 + T lin

1,−1

”

, (29)

and finally those with linearly polarised beam on a vector
target (P (d)

1 = 1, P
(γ)
lin = 1, P

(d)
2 = P

(γ)
circ = 0) as

see eqs. (27)–(29) above

or

T lin
11 =

1√
2

(
Σ

[5]
1x − Σ

[5]
3y

)
, T lin

1,−1 = − 1√
2

(
Σ

[5]
1x + Σ

[5]
3y

)
.

(28)
For Σ2x/z, Babusci et al. flip the circular beam polarisa-
tion. Due to parity symmetry, this is equivalent to flipping
the target polarisation above.

2.5.3 Polarised deuteron observables by Chen et al. [6],
Choudhury/Phillips [8, 9] and Grießhammer/Shukla [10]

These authors define observables in analogy to those in-
troduced by Babusci et al. [5]. However, the deuteron is
taken to be prepared such that only the magnetic quan-
tum numbers Mi�d = ±1 contribute, in the direction �d in
which the density matrix is diagonal. To understand why
this difference may lead to confusion, consider the single-
polarisation observable for scattering an unpolarised (or
circularly polarised) beam on a deuteron target which
is polarised in a pure Miy = ±1 state perpendicular to
the scattering plane (i.e. parallel or anti-parallel to the
y-axis),

Σ[6]
y =

dσ
dΩ (Miy = +1) − dσ

dΩ (Miy = −1)
· + · , (29)

where the same abbreviation as in eq. (23) is used. This
appears to be the natural application of Σ

[5]
y , eq. (24), to

the deuteron. Since the deuteron polarisation is flipped
in the difference, the numerator should describe a vector-
polarised deuteron. According to eq. (21), a pure state
|Mi�d| = 1 is described by P

(d)
1 =

√
3/2 and P

(d)
2 = 1/

√
2.

For this observable, �d is parallel to the y-axis, so that
Miy = ±1 corresponds to ϑd = π/2, ϕd = ±π/2. With
P

(γ)
circ = P

(γ)
lin = 0 and the same abbreviations as before,

the numerator becomes
(Miy = +1) − (Miy = −1) =

(
ϑd =

π

2
, ϕd = +

π

2

)

−
(
ϑd =

π

2
, ϕd = −π

2

)
= −

√
3 T11

dσ

dΩ

∣∣∣∣
unpol

. (30)

Tensor observables do indeed not contribute. In contradis-
tinction, the denominator reads

(Miy = +1) + (Miy = −1)

=
(
ϑd =

π

2
, ϕd = +

π

2

)
+

(
ϑd =

π

2
, ϕd = −π

2

)

=

[
2 −

(
1√
2

T20 +
√

3
2

T22

)]
dσ

dΩ

∣∣∣∣
unpol

. (31)

It is no more proportional to the unpolarised cross sec-
tion since the Miy = 0 term is absent, as noted already in
refs. [6, 8, 9]. Like in Σ

[5]
y of eq. (24), the resulting asym-

metry,

Σ[6]
y = − 2

√
3 T11

4 −
√

3 T22 −
√

2 T20

, (32)

is proportional to T11, but the prefactor has changed and
now depends in addition on the tensor-polarised observ-
ables T2(0,2). While the same symbol is used for the vec-
tor target polarisation in ref. [5] and for that of ref. [6],
eq. (29), the two are actually different,

Σ[6]
y �= Σ[5]

y ! (33)

It is for this reason that the apparent notational degener-
acy is lifted throughout this article by including an explicit
reference superscript.

Translating the other observables of refs. [6, 8–10] is
now straightforward. Asymmetries with unpolarised tar-
gets are of course identical, eq. (23). Since ref. [10] con-
siders both differences of polarised cross sections (de-
noted by Δ[10]) and their asymmetries Σ[10], both are also
recorded in the following. One finds with P

(d)
1 =

√
3/2,

P
(d)
2 = 1/

√
2, P

(γ)
circ = 1 and P

(γ)
lin = 0 for the asymmetries

built in analogy to Σ
[5]
2x/z:

Δcirc [10]
x = (Mix = +1;λi = 1) − (Mix = −1; 1)

=
(
ϑd =

π

2
, ϕd = 0

)
−

(π

2
, ϕd = π

)

= −
√

3 T circ
11

dσ

dΩ

∣∣∣∣
unpol

, (34)

Σcirc [10]
x ≡ Σ[6,8,9]

x =
Δ

circ [10]
x

· + ·

= − 2
√

3 T circ
11

4 +
√

3 T22 −
√

2 T20

, (35)

Δcirc [10]
z ≡ 2

[
Δ1

dσ

dΩ

][6]

= (Miz = +1; 1) − (Miz = −1; 1)

= (ϑd = 0) − (ϑd = π)

=
√

6 T circ
10

dσ

dΩ

∣∣∣∣
unpol

, (36)

Σcirc [10]
z ≡Σ[8,9]

z ≡−Σ[6]
z =

Δ
circ [10]
z

· + · =
√

3 T circ
10√

2 + T20

. (37)
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In no case is the denominator just proportional to the un-
polarised cross section; instead, it also depends on T2(0,±2).
It should be noted that ref. [6] provides formulae for the
denominators of Σ

[6]
x/y/z which depend only on the scalar

and vector parts of the target polarisation. These results
could not be reproduced.

The following additional cross section differences and
asymmetries for linearly polarised beam on a polarised
deuteron target were described in ref. [10]:

Δlin [10]
x = (Mix = 1;ϕlin = 0) −

(
Mix = 1;ϕlin =

π

2

)

=
(
ϑd =

π

2
, ϕd = 0;ϕlin = 0

)
−

(π

2
, 0;

π

2

)

=

[
2Σlin+

√
3

2
(
T lin

22 +T lin
2,−2

)
− 1√

2
T lin

20

]
dσ

dΩ

∣∣∣∣
unpol

, (38)

Σlin [10]
x =

Δ
lin [10]
x

· + ·

=
4Σlin +

√
3
(
T lin

22 + T lin
2,−2

)
−
√

2 T lin
20

4 +
√

3 T22 −
√

2 T20

, (39)

Δlin [10]
z = (Miz = 1;ϕlin = 0) −

(
Miz = 1;ϕlin =

π

2

)

= (ϑd = 0;ϕlin = 0) −
(
0;

π

2

)

=
[
2Σlin +

√
2 T lin

20

] dσ

dΩ

∣∣∣∣
unpol

, (40)

Σlin [10]
z =

Δ
lin [10]
z

· + · =
2Σlin +

√
2 T lin

20

2 +
√

2 T20

, (41)

with P
(d)
1 =

√
3/2, P

(d)
2 = 1/

√
2, P

(γ)
circ = 0 and P

(γ)
lin = 1.

Notice that the numerators Δ
lin [10]
x/z depend on different

and nontrivial combinations of both Σlin and T lin
2(0,±2).

Σ
lin [10]
x and Σ

lin [10]
z would be identical if the tensor-

polarised observables were zero.
The additional terms proportional to T2(0,2) in each

denominator of Σ
[6]
y and Σ

circ/lin [10]
x/z will by themselves

turn out to be rather large, sensitive to the polarisabil-
ities, and significantly dependent on photon energy and
scattering angle; see figs. 8, 9 and 11 in sect. 3.3. Without
this input, no simple conclusions can thus be drawn on
how the sensitivity of Σ

[6]
y on the polarisabilities trans-

lates into the sensitivity of its numerator alone. On the
other hand, Δ

lin [10]
x/z is dominated by Σlin and T lin

2,−2 since
T lin

2(0,2) will turn out to be very small.

3 Observables in χEFT

3.1 Theoretical ingredients

The following subsections explore the sensitivity of the 18
independent observables to the scalar and spin dipole po-
larisabilities in χEFT. Since this version of the deuteron

Compton scattering amplitudes is described comprehen-
sively in previous publications [10,35,36] and summarised
in a recent review [1], its main ingredients are only
sketched here.

In χEFT with explicit Δ(1232) degrees of freedom,
four typical low-energy scales are found in deuteron
Compton scattering: the pion mass mπ ≈ 140MeV as
the typical chiral scale; the Delta-nucleon mass splitting
ΔM ≈ 290MeV; the deuteron binding momentum (in-
verse deuteron size) γ ≈ 45MeV as the typical scale of
the bound NN system; and the photon energy ω. When
measured in units of a natural “high” scale Λχ � ΔM ,mπ,
ω, γ at which χEFT with explicit Δ(1232) degrees of free-
dom can be expected to break down because new degrees
of freedom become dynamical, each gives rise to a small,
dimensionless expansion parameter. Typical values of Λχ

are the masses of the ω and ρ as the next-lightest exchange
mesons (about 700MeV). To avoid a fourfold expansion,
it is convenient to approximately identify some scales so
that only one dimensionless parameter is left. In the δ-
expansion of Pascalutsa and Phillips [37], one chooses

δ ≡ ΔM

Λχ
≈

(
mπ

Λχ

)1/2

, (42)

i.e. numerically δ ≈ 0.4. The identity is exact for Λχ ≈ 600
MeV. Since present experiments are run at ω � 200MeV,
the nonzero Delta width is not tested, cf. ref. [29].

The two-nucleon dynamics adds the momentum scale γ
of the shallow bound state. Based on refs. [10,35,36,38,39],
sect. 5 of ref. [1] provides a “unified” deuteron Comp-
ton amplitude which is complete at order e2δ3 and valid
from zero photon energy to just below the pion produc-
tion threshold, ω � mπ. This variant is identical to O(ε3)
in the “Small Scale Expansion” [40–43], used in ref. [10].
At this order, the Compton scattering kernel consists of
“one-nucleon contributions” in which both photons inter-
act with the same nucleon (fig. 3), and “two-nucleon con-
tributions” (fig. 2). The latter consists of two classes, each
of which contributes at the order O(e2δ3) of the present
formulation:

1) Both photons couple to the charged pion-exchange cur-
rent, fig. 2(a) [44].

2) Each photon couples to the nucleon charge, magnetic
moment and/or to different pion-exchange currents
(figs. 2(b) and (c)). Between the two couplings, the
nucleons rescatter arbitrarily often via the full NN S-
matrix (including no rescattering at all). These contri-
butions are small for ω ∼ mπ but required for ω � γ
in order to restore the exact low-energy theorem of
Compton scattering, i.e. the Thomson limit [45–48]. At
zero energy, its emergence in the χEFT power count-
ing mandates that the contribution of fig. 2(b) must
be exactly minus half that of the one-nucleon Thom-
son term, fig. 3(a), and that the pion-exchange con-
tributions of fig. 2(a) and (c) must add to zero [1].
Such stringent numerical tests are fulfilled to better
than 0.2%. At higher energies, the significance of this
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Fig. 2. (Colour on-line) Two-nucleon contributions in χEFT up to order e2δ3 (permuted and crossed diagrams not shown).
Photons couple to the same pion (a); rescattering contributions (b,c). Ellipse: two-nucleon S-matrix; dot: coupling via minimal
substitution or magnetic moment. From ref. [10].

Fig. 3. (Colour on-line) One-nucleon contributions in χEFT up to O(e2δ3) (permuted and crossed diagrams not shown). Top:
embedding into the deuteron. Bottom: one-nucleon Thomson term (a); pion cloud of the nucleon (b) and Δ(1232) (double line
(c)); excitation of an intermediate Δ (d); short-distance effects to αE1 and βM1 (e). From ref. [10].

cancellation belies in a considerable reduction of the
dependence of the amplitudes on the deuteron wave
function and NN potential [1].

The one-nucleon sector is formed by:

1) Single-nucleon Thomson scattering, fig. 3(a), is the
leading-order term, O(e2δ0).

2) Coupling to the chiral dynamics of the single-nucleon
pion cloud, fig. 3(b), O(e2δ2).

3) Excitation of the Δ(1232) intermediate state, fig. 3(d),
and coupling to the pion cloud around it, fig. 3(c),
each contributing at O(e2δ3) for ω � mπ. Following
ref. [1], Δ is treated nonrelativistically and with zero
width, using ΔM = 293MeV, gπNΔ = 1.425 and the
nonrelativistic version of the NΔγ M1-coupling b1 =5,

obtained from converting the relativistic value of gM =
2.9. This value, in turn, is found by fitting the single-
nucleon amplitudes to the data above 150MeV in the
proton Compton database established there.

4) Two energy-independent, isoscalar short-distance co-
efficients, fig. 3(e), which encode those contributions
to the nucleon polarisabilities αE1 and βM1 which
arise at this order neither from pions nor from
the Δ(1232). Since they are formally of one order
higher, O(e2δ4), the order of the resulting total am-
plitude is called “modified O(e2δ3)”. While these “off-
sets” for the static polarisabilities are determined by
data, the energy- and isospin-dependence of the spin-
independent polarisabilities are at this order predicted
in χEFT. Here, their values are taken from the deter-
mination in ref. [1] (see eq. (3)).
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Nucleon polarisabilities arise solely from terms 2) to 4).
In this power counting, “switching off” Δ(1232) contri-
butions is equivalent to a calculation at one lower order,
O(e2δ2), in which the scalar polarisabilities are parameter-
free predictions: αE1 = 10βM1 = 12.5 [27].

These kernels are convoluted with deuteron wave
functions to obtain the amplitudes 〈Mf , λf |T |Mi, λi〉 of
eq. (11). Results in this article are obtained with the
χEFT deuteron wave function at N2LO (cutoff 650MeV)
in the implementation of Epelbaum et al. [49] and the
AV18 potential [50] for NN rescattering. This combination
provides an adequate χEFT representation of the two-
nucleon system; see discussion in ref. [1] and sect. 3.3.2
below.

This formulation differs from the previous ones of
refs. [10, 35, 36] in some numerical improvements, a new
parameter set (b1, gπNΔ,ΔM ) for the Δ(1232) from the
Breit-Wigner parameters and the proton Compton data,
and in slightly changed numbers for the isoscalar, scalar
polarisabilities. In a fully consistent EFT calculation, the
kernel, wave functions and potential should of course be
derived in the same framework. This is work in progress.

3.2 Strategy

At this (modified) order e2δ3, the static isoscalar dipole
polarisabilities are (with theoretical uncertainties of about
±0.8 from higher-order contributions and in the canoni-
cal units of 10−4 fm3 for the scalar polarisabilities and
10−4 fm4 for the spin-dependent ones) [1, 10,17]

αE1 = 10.9,

βM1 = 3.6,

γE1E1 = −5.3,

γM1M1 = 3.1,

γM1E2 = 0.9,

γE1M2 = 0.9, (43)

i.e. γ0 = +0.4, γπ = 8.4, which is not incompatible with
those of other approaches, see eq. (5). The values for the
spin polarisabilities differ slightly from those quoted in
refs. [10,17] because of the updates to the O(e2δ3) ampli-
tudes described in sect. 5.3 of the ref. [1]. The convergence
of the spin polarisabilities from O(e2δ2) via the O(e2δ3)
values quoted above to the values at O(e2δ4) is compli-
cated (see table 4.2 of ref. [1]). Therefore, no theoretical
uncertainty is assigned for now.

Since the deuteron is an isoscalar, only average nucleon
polarisabilities are accessible in elastic deuteron Compton
scattering. In order to analyse the sensitivity of each ob-
servable, one varies each dipole polarisability about the
static central value by adding the parameters δαE1, δβM1,
δγE1E1, δγM1M1, δγE1M2 and δγM1E2 to the interactions
of the single-nucleon subsystem, eq. (1) [8,10]. Their con-

tribution to the amplitudes in the γN cm system is

Afit(ω, z) =

4π ω2
[
[δαE1 + z δβM1] (�ε ′ · �ε ) − δβM1 (�ε ′ · k̂) (�ε · k̂′)

−i[δγE1E1+ zδγM1M1+δγE1M2+zδγM1E2]ω �σ · (�ε ′ × �ε )

+i [δγM1E2 − δγM1M1]ω �σ ·
(
k̂′ × k̂

)
(�ε ′ · �ε )

+i δγM1M1 ω �σ ·
[(

�ε ′ × k̂
)

(�ε · k̂′) −
(
�ε × k̂′

)
(�ε ′ · k̂)

]

+i δγE1M2 ω �σ ·
[(

�ε ′ × k̂′
)

(�ε · k̂′) −
(
�ε × k̂

)
(�ε ′ · k̂)

] ]
.

(44)

These variables may be considered as parametrising the
difference between predicted and (so far unmeasured) ex-
perimental static values of the polarisabilities, under the
assumption that the energy-dependence from the pion-
cloud and Δ(1232) is correctly predicted in χEFT. Alter-
natively, one can view them as parametrising deviations
from the order-e2δ3 χEFT amplitudes at fixed nonzero
energy, including the theoretical uncertainties of higher-
order effects. In that case, the deviations themselves could
be seen as energy-dependent. Such an approach forms the
basis of a multipole analysis of deuteron Compton scat-
tering advocated in refs. [10, 39, 51]. Determining the six
dipole polarisabilities is then in principle reduced to a
multipole analysis of 6 + 1 high-accuracy scattering ex-
periments.

The variation of the isoscalar values by ±2 canonical
units is chosen since it is roughly at the level of the com-
bined statistical, theoretical and Baldin-sum-rule–induced
error for αE1 and βM1 (3). With quadratic contributions
of the polarisabilities δ(αE1, βM1, γi) suppressed in the
squared amplitudes, variations by other amounts are eas-
ily linearly extrapolated. In practise, the scalar polarisabil-
ities of the proton are constrained to better than ±2, so
that deuteron Compton scattering experiments are more
likely focused on extracting neutron polarisabilities. In
that case, these studies can be interpreted as providing
the sensitivities on varying the neutron polarisabilities by
±4 units, with fixed proton values.

The spin polarisabilities are however less well known;
besides the constraints of eq. (5), no experimental informa-
tion has been published thus far, and theoretical descrip-
tions easily disagree by as much as 2 units [1]. For example,
a recent determination of the scalar dipole polarisabilities
of the proton included varying one of the spin polarisabil-
ities to γM1M1 = 2.2 ± 0.5(stat), which —combined with
its theoretical accuracy— would by itself already suggest
a variation by about 2 units.

Amplitudes from scalar polarisabilities scale like ω2,
while those containing spin polarisabilities scale like ω3;
see eq. (44). Ideally, one can therefore perform high-
accuracy experiments at relatively low energies, ω �
70MeV, to better determine αE1 and βM1 and constrain
high-energy predictions. The spin polarisabilities are then
extracted at � 100MeV, as already advocated in ref. [10].
The observables considered here follow this pattern.



Eur. Phys. J. A (2013) 49: 100 Page 11 of 31

Fig. 4. (Colour on-line) Screenshot of part of the interactive Mathematica notebook.

Additionally, one should address:

1) The Baldin sum rule constraint, eq. (4). However, its
independent test by better data at forward angles
would be expedient.

2) Weaker constraints for the forward and backward spin
polarisabilities, eq. (5). These come with considerable
theoretical and systematic uncertainties.

3) Logistic constraints like detector placement and avail-
able beam energies, as well as detector and polarisa-
tion efficiencies. All these must be taken into account
to determine which experiments have the potential for
the greatest sensitivity on a given polarisability and
of the greatest impact in the network of data already
available.

Considering asymmetries removes many systematic
experimental uncertainties, but the corresponding count
rates are necessary for beam-time estimates and fol-
low from multiplying with the unpolarised cross section,
cf. (10). In general, asymmetries are by � 30% less sen-
sitive to variations of the polarisabilities than the corre-
sponding count rates. Sometimes, sensitivity to the nu-
cleon structure is even lost entirely, while an enhancement
appears in no case. It is the purview of our experimental
colleagues to determine to what extent such drawbacks
outweigh the benefits of measuring asymmetries instead
of cross section differences.

To present all 17 asymmetries and their rates, plus the
unpolarised cross section, depending on 6 dipole polaris-
abilities and 2 kinematic variables (photon energy ω and
scattering angle θ) in the cm and lab frame, plus addi-

tional theoretical uncertainties and both theoretical and
experimental constraints, far exceeds what can adequately
be conveyed in an article. Here, the focus is therefore on
some prominent examples. In order to facilitate planning
and analysis of experiments, the results of all observables
are available as an interactive Mathematica 9.0 notebook
from hgrie@gwu.edu. It contains both tables and plots of
energy- and angle-dependencies of the cross sections, rates
and asymmetries from 10 to about 120MeV, in both the
cm and lab systems, including sensitivities to varying the
scalar and spin polarisabilities independently as well as
subject to the Baldin sum rule and other constraints. Since
it considers all observables with polarised beams and/or
targets, it supersedes ref. [10] which only dealt with some
observables, built in analogy to the Babusci classification;
see sect. 2.5.3. Figure 4 shows a sample screenshot of a
cross section difference with user-defined beam and target
polarisations.

It is finally worth re-emphasising that the purpose of
this study is to establish relative sensitivities of Comp-
ton scattering observables on varying the polarisabili-
ties [10]. Credible predictions of their absolute magnitudes
are only meaningful when all systematic uncertainties are
properly propagated into observables. Such errors include:
theoretical uncertainties from discarding contributions in
χEFT which are higher than order e2δ3, like including
effects of the Δ(1232) width and parameter uncertain-
ties; uncertainties in the data and in the Baldin sum rule,
eq. (4); and, to a lesser extent, residual dependence on the
deuteron wave function and NN potential used, as well as
numerical uncertainties.
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Fig. 5. (Colour on-line) Unpolarised cross section dσ/dΩ|unpol in the lab frame, in nbarn/sr. Top: energy-dependence at different
angles. Other panels: sensitivity to varying a polarisability abouts its central value (solid line) of eq. (43) by +2 (dashed line)
and −2 (dotted line) units, at ωlab = 100 MeV. From top left to bottom right: variation of αE1, αE1 − βM1 (constrained by the
Baldin sum rule), γE1E1, γM1M1, γE1M2, γM1E2.

3.3 Results

3.3.1 Size and sensitivity

Figures 5 to 23 present the χEFT results of an O(e2δ3)
calculation, with dynamical Δ(1232) and NN rescatter-
ing. Let us concentrate on the sensitivity to the polaris-

abilities at one representative energy in the (experimen-
tally most relevant) lab frame. With an eye on parame-
ters at HIγS, MAXlab, MAMI and possible future high-
luminosity accelerators like MESA [52], a beam energy
of ωlab = 100MeV seems appropriate. Staying below the
pion-production threshold avoids experimental and theo-
retical complications.
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Fig. 6. (Colour on-line) Beam asymmetry Σlin in the lab frame. Top: energy-dependence at different angles. Other panels:
sensitivity to varying a polarisability abouts its central value (solid line) of eq. (43) by +2 (dashed line) and −2 (dotted line)
units, at ωlab = 100MeV. From top left to bottom right: variation of αE1, αE1 − βM1, γE1E1, γM1M1, γE1M2, γM1E2.

Since the asymmetries differ by 3 orders of mag-
nitude, one should keep in mind changes of scale be-
tween plots of different observables. Comparing them is
simplified by plots of T2M , T circ

1M , T circ
2M , T lin

1M and T lin
2M ,

each for the different nontrivial values of M at ωlab =
100MeV. With magnitudes of up to 0.60, the largest
asymmetries are Σlin, T circ

10 and T lin
2,−2, followed by mag-

nitudes on the order of 0.1 for TJM , T circ
11 , T lin

1,(0,−1) and
T lin

2(0,−1). The order of magnitude of T circ
2M , T lin

10 and T lin
21

is 10−2, and that of T lin
11 and T lin

22 even 10−3, provid-
ing considerable experimental challenges. The observables
T lin

JM show a clear hierarchy, with sizes increasing sub-
stantially towards the most negative M -values at given
J .
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Fig. 7. (Colour on-line) Vector target asymmetry T11 (lab frame). See fig. 6 for notes.

The top panel of each single-observable plot, figs. 5 to 7
and 9 to 23, shows the energy-dependence of each observ-
able at four scattering angles θlab ∈ {60◦; 90◦; 120◦; 150◦}.
In each case, the deuteron breakup point at ωlab ≈ 3MeV
is clearly visible. Only T circ

22 and T lin
22 significantly decrease

with increasing photon energy, but T2(1,0) and T lin
20 change

sign around 90MeV. All observables which are zero below
the first threshold, eq. (20), grow rapidly above it —in the
case of T11 and T lin

1,−1 even to ≈ 0.2 at 100MeV.

Sensitivity on the nucleon polarisabilities grows as ex-
pected with increasing photon energy. In the lower panels
of figs. 5 to 7 and 9 to 23, two plots show the sensitivity
to αE1 and the combination αE1 − βM1 when the Baldin
sum rule constraint is used. This, of course, also allows
one to assess where variations of βM1 are (anti-)correlated
to those of αE1. The other 4 panels describe variations
of the spin polarisabilities, without imposing additional
constraints. Within one observable, all sensitivities are of
course plotted on the same scale.
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Fig. 8. (Colour on-line) Comparison of the relative sizes of, from top left to bottom right, T2M , T circ
1M , T circ

2M , T lin
1M , T lin

2M , at
ωlab = 100 MeV in the lab frame, with the static polarisabilities given by eq. (43). solid line: M = 0; dashed line: M = 1; dotted
line: M = 2; short-dashed line: M = −1; dash-dotted line: M = −2. Each panel is drawn at a different scale.

Plots of the unpolarised cross section, fig. 5, are in-
cluded for quick rate estimates. Its overall size is dramat-
ically affected by a variation of αE1, its backward angles
by that of αE1 − βM1, and there is only minor sensitivity
on the spin polarisabilities.

The beam asymmetry Σlin shows a mildly different
angular dependence on αE1 and βM1, possibly allowing for
extractions. That sensitivity to the other polarisabilities is
small, had already been demonstrated in a χEFT variant
without dynamical Δ(1232) in refs. [8, 9]. Delta effects
affect this variable only minimally.

In a future world of high-accuracy experiments
with well-controlled systematic experimental uncertain-

ties, high luminosities and 100% beam and target polarisa-
tions, an ideal observable should be very sensitive to one
polarisability, while being near insensitive to all others.
For αE1, this singles out T11 (fig. 7), T lin

1,−1 (fig. 18) and
T lin

2,−2 (fig. 23); for γE1E1, T circ
11 (fig. 12). When one takes

αE1 and βM1 to be know sufficiently well that the influ-
ence on varying them can be neglected, then T circ

11 (fig. 12),
T circ

2(2,1) (figs. 14 and 15) and T lin
10 (fig. 17) are dominated

by sensitivity to γE1E1 only. Curiously, T lin
11 (fig. 16) is

near exclusively sensitive to the mixed spin polarisability
γM1E2, and both T lin

22 (fig. 19) and T lin
21 (fig. 20) to its

partner γE1M2 —albeit all three are very small.



Page 16 of 31 Eur. Phys. J. A (2013) 49: 100

Fig. 9. (Colour on-line) Tensor target asymmetry T22 (lab frame). See fig. 6 for notes.

Alternatively, different angular dependencies can be
used to disentangle two polarisabilities from the same
observable; see, e.g., T21 for γE1E1 and γM1E2 (fig. 10)
and —to a lesser extent— T lin

20 for γM1M1 and γE1M2

(fig. 21). Keeping in mind that none of the tensor ob-
servables have an analogue in Compton scattering off
the nucleon, such an augmentation is absent in the one-
nucleon case. It appears that mixed polarisabilities are

much better accessible in scattering from the deuteron.
The photon quadrupole coupling to one nucleon (M2 in
γE1M2 and E2 in γM1E2) seems to be enhanced by the
D wave components of the deuteron wave function and
pion-exchange current, fig. 2(a) and (c). One may thus
speculate that determinations of γE1M2 and γM1E2 will
first appear from deuteron data —if the necessary accu-
racy can be reached for these small asymmetries.
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Fig. 10. (Colour on-line) Tensor target asymmetry T21 (lab frame). See fig. 6 for notes.

References [1, 10, 53] have argued in detail that sen-
sitivity to a specific polarisability can be maximised or
switched off by considering particular target-beam com-
binations at particular angles. To that end, one either
maximises the scalar products between photon polarisa-
tions �ε, �ε ′, photon momenta �k, �k′ and nucleon spin �σ,
or one chooses some vectors to be orthogonal or paral-
lel, rendering the associated (scalar or vector) products
zero. Many of these “zero-sensitivity points” are preserved
when the relative motion of the γN cm system inside the

deuteron is taken into account. In some cases, the deuteron
effect lifts the zero, but only barely, since the nucleons are
predominantly in a relative S wave, while D wave con-
tributions (also from pion-exchange currents, fig. 2(a–c))
are suppressed. Relativistic boost effects are small at the
energies considered [54]. Examples include the following
insensitivities (angles in the cm frame): T2(2,0) to βM1 at
90◦; T20 to γE1E1 at 60◦ and to γE1M2 at 120◦; T21 to
γE1M2 and γM1E2 at 90◦; T circ

21 to γE1E1 at 90◦; and T lin
2,−1

to γM1M1 at 90◦.
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Fig. 11. (Colour on-line) Tensor target asymmetry T20 (lab frame). See fig. 6 for notes.

A good example of undesired correlations between
variations of different polarisabilities is T circ

22 (fig. 14),
where angular dependencies and magnitudes of changing
αE1 and γE1E1 are near identical. T circ

10 (fig. 13) is near
equally sensitive to all dipole polarisabilities.

Applying these criteria and assuming that αE1 and
βM1 are known, the following observables could therefore
provide an experimentally realistic but challenging com-

plete set from which to cleanly determine the isoscalar spin
polarisabilities: T circ

11 for γE1E1 (variation by ±2 translates
into ±5% of an asymmetry magnitude of about 0.3), fol-
lowed by angular dependence of T lin

20 (±15% of mag. 0.05)
for γM1M1, followed by T22 (±5% of mag. 0.15) for γM1E2

and check on γM1M1, plus T lin
21 (±15% of mag. 0.03) for

γE1M2. The different angular dependencies of T21 (up to
±20% of mag. 0.05) can serve as valuable check.
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Fig. 12. (Colour on-line) Double asymmetry T circ
11 (lab frame). See fig. 6 for notes.

3.3.2 Dependence on rescattering, Δ-physics and the NN
interaction

As hinted above, reliable theoretical predictions should
include a study of residual theoretical uncertainties.
The aforementioned Mathematica notebook therefore ex-
plores the influence of NN rescattering, of the dynami-
cal Δ(1232), and of the particular two-nucleon interaction
used. The results mostly confirm those of refs. [1, 10] and
thus are only summarised here. Rescattering significantly

affects all observables for energies � 70MeV and is impor-
tant to reduce residual dependence on the NN potential
and deuteron wave function up to 120MeV, as predicted
by the power counting. Details of the NN potential or
deuteron wave function are not reflected in observables.
For example, at 100MeV, the largest wave function depen-
dencies are ≈ ±5% of the maximum in T circ

22 and ≈ ±2%
of the maximum in T lin

20 . These observables are however
quite small (< 0.05); all other observables suffer from a
residual wave function dependence of < 1% at that en-
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Fig. 13. (Colour on-line) Double asymmetry T circ
10 (lab frame). See fig. 6 for notes.

ergy, as tests with AV18 [50], Nijmegen 93 [55] and other
wave functions demonstrate.

Not surprising is also that Δ(1232) effects become
more pronounced with increasing energy. It is now well un-
derstood that its spin-flip amplitude considerably changes
the shape of the unpolarised differential cross section at
backward angles [35,36,56], thereby solving the “SAL puz-
zle” of deuteron Compton data at 94MeV [12, 13, 44, 54,
57–59]. While the influence of the Delta on some observ-

ables like Σlin may be very small, it is hard to imagine an
EFT without it to be reliable at photon energies around
100MeV. As a case in point, T lin

20 is at 100MeV increased
by 50% and changes shape when the Delta is included;
T circ

10 increases by 30%, while T21 is reduced by 20%, and
T lin

22 even by 50%. T20 changes shape at forward angles.
Delta effects cannot be neglected above about 70MeV,
especially in the large momentum transfers at back an-
gles.
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Fig. 14. (Colour on-line) Double asymmetry T circ
22 (lab frame). See fig. 6 for notes.

4 Conclusions and outlook

Based on a well-known decomposition of the deuteron
photo-dissociation cross section, this work presented a
classification of all 18 independent observables in Comp-
ton scattering off an unpolarised, vector, tensor or mixed-
polarised spin-1 target with unpolarised, circularly, lin-
early or mixed-polarised beam when final-state polari-

sations are not detected. The unpolarised cross section,
beam asymmetry, 4 target asymmetries and 12 dou-
ble asymmetries were expressed in terms of the helic-
ity amplitudes and related to previously used, incom-
plete parametrisations. This decomposition is particularly
transparent, with each observable readily translated into
specific and well-known beam/target/detector combina-
tions.
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Fig. 15. (Colour on-line) Double asymmetry T circ
21 (lab frame). See fig. 6 for notes.

The method was then applied to deuteron Compton
scattering in χEFT with dynamical Δ(1232) degrees of
freedom using amplitudes which are complete at order
e2δ3 in the energy range from the Thomson limit to just
below the pion production threshold. Since this process
tests the isoscalar two-photon response of the nucleon,
embedded in the simplest bound few-nucleon system [1],
the sensitivity of each observable on the 6 dipole polar-

isabilities of the nucleon was studied. These, in turn, en-
code information on the symmetries and strengths of the
interactions with and between the hadronic internal low-
energy degrees of freedom. They characterise the radiation
multipoles which are generated by displacing the charges
and currents inside the nucleon in the electric or mag-
netic field of a photon with definite energy and multi-
polarity. To determine in particular the 4 spin polaris-
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Fig. 16. (Colour on-line) Double asymmetry T lin
11 (lab frame). See fig. 6 for notes.

abilities is the objective of a large-scale effort including
HIγS, MAX-Lab and MAMI, since they parametrise the
response of the nucleon spin degrees of freedom but are
not yet well-constrained. This study thus aids in plan-
ning and analysing experiments to determine the nucleon
polarisabilities from deuteron Compton scattering. An in-
teractive Mathematica 9.0 notebook of its results over a
wide range of energies is available from hgrie@gwu.edu.

With future high-accuracy determinations of the scalar
polarisabilities αE1 and βM1 at lower energies, the spin
polarisabilities seem to be reliably extractable at energies
of � 100MeV from the observables T circ

11 (circularly po-
larised beam on vector target), T2(2,1) (unpolarised beam
on tensor target) and T lin

2(1,0) (linearly polarised beam on
tensor target). This experimentally challenging but re-
alistic set consists of asymmetries which have maxima
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Fig. 17. (Colour on-line) Double asymmetry T lin
10 (lab frame). See fig. 6 for notes.

from 0.3 to 0.05 and are mostly sensitive to only 1 or
2 polarisabilities. Modifying the spin polarisabilities by
±2×10−4 fm4 in them induces variations of ±5% to ±20%
at 100MeV.

Since nuclear binding is mediated by charged pion-
exchange currents to which the photons can couple,
deuteron Compton scattering concurrently tests the de-
tailed symmetries and dynamics of the charged part of
the two-nucleon interaction. The D wave contributions

of the deuteron wave function and of the pion-exchange
currents lead to nonzero tensor observables. By inter-
ference with the quadrupole components of the incident
and outgoing photon, these, in turn, seem to be much
more sensitive on the mixed spin polarisabilities γE1M2

and γM1E2 than any single-nucleon observable. One may
thus speculate that their determination will first appear
from deuteron data —if the necessary accuracy can be
reached.
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Fig. 18. (Colour on-line) Double asymmetry T lin
1,−1 (lab frame). See fig. 6 for notes.

Ongoing work includes embedding the O(e2δ4) single-
nucleon amplitudes of ref. [29] for an extension to photon
energies above the pion-production threshold, also with
Δ-ful pion-exchange currents; inclusion of a chirally con-
sistent NN potential; and a detailed assessment of theo-
retical uncertainties. In support of ongoing and planned
experiments at HIγS, MAX-Lab and MAMI, this effort is
pursued in the context of a comprehensive theoretical de-

scription of Compton scattering on the proton, deuteron
and 3He in χEFT, valid from zero photon energy well into
the Δ resonance region. As pendant to the present arti-
cle, a classification of the independent polarisation trans-
fer observables on a spin-1 target will determine those 5
which are linearly independent and complement those pre-
sented here for the complete set of 23 independent observ-
ables [15]. From these, the 23 independent real amplitudes
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Fig. 19. (Colour on-line) Double asymmetry T lin
22 (lab frame). See fig. 6 for notes.

can be reconstructed in turn, and hence all information ac-
cessible in the two-photon response of the deuteron and
its constituents.

Finally, I offer to embed single-nucleon Compton am-
plitudes, chiral or not, into the available deuteron code, so
that other theoretical descriptions can be tested collabo-
ratively.
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J.A. McGovern and D.R. Phillips, for discussions and en-
couragement, and to the organisers and participants of the
INT workshop 12-3: “Light Nuclei from First Principles”
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with Intense, Polarized Electron Beams with Energy up to
300 MeV” at the MIT, both of which also provided finan-
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Fig. 20. (Colour on-line) Double asymmetry T lin
21 (lab frame). See fig. 6 for notes.
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Fig. 21. (Colour on-line) Double asymmetry T lin
20 (lab frame). See fig. 6 for notes.
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Fig. 22. (Colour on-line) Double asymmetry T lin
2,−1 (lab frame). See fig. 6 for notes.
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Fig. 23. (Colour on-line) Double asymmetry T lin
2,−2 (lab frame). See fig. 6 for notes.
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