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Abstract. The respiratory system of mammalians is made of two successive branched structures with
different physiological functions. The upper structure, or bronchial tree, is a fluid transportation system
made of approximately 15 generations of bifurcations leading to the order of about 215 = 30, 000 terminal
bronchioles with a diameter of approximately 0.5 mm in the human lung. The branching pattern continues
up to generation 23 but the structure and function of each of the subsequent structures, called acini, is
different. Each acinus consists in a branched system of ducts surrounded by alveoli and plays the role of
a diffusion cell where oxygen and carbon dioxide are exchanged with blood across the alveolar membrane.
We show here that the bronchial tree simultaneously presents several different optimal properties. It is
first energy efficient, second, it is space filling and third it is also “rapid”. This physically based multi-
optimality suggests that, in the course of evolution, an organ selected against one criterion could have
been used later for a totally different purpose. For example, once selected for its energetic efficiency for the
transport of a viscous fluid like blood, the same genetic material could have been used for its optimized
rapidity. This would have allowed the emergence of atmospheric respiration made of inspiration-expiration
cycles. For this phenomenon to exist, rapidity is essential as fresh air has to reach the gas exchange organs,
the pulmonary acini, before the beginning of expiration. We finally show that the pulmonary acinus is
optimized in the sense that the acinus morphology is directly related to the notion of a “best possible”
extraction of entropic energy by a diffusion exchanger that has to feed oxygen efficiently from air to blood
across a membrane of finite permeability.

1 Introduction: Physical constraints to feed
living systems and the properties of
arborescent tree structures

The metabolism of living systems requires cells and or-
gans to be efficiently fed. This means that the entire vol-
ume of a living organ has to be supplied by a “space-
filling transport mechanism”. Only two mass transport
mechanisms fulfill this requirement: convective transport
through a space-filling network, and diffusion. But these
mechanisms have very different velocities. Typical diffu-
sion coefficients in water are of order 10−6 to 10−5 cm2/s.
The diffusion velocity to cross a distance � in a medium
with diffusion coefficient D is about D/�, and the time
to cross this distance is �2/D. The diffusion time to cross
a distance � ≈ 10μm in water is therefore about several
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seconds. This time increases as the square of the distance
and is already of order 104 seconds for � ≈ 1mm. This is
why diffusion is an efficient feeding mechanism at small
spatial scales like that of cellular or small multi-cellular
systems, but is not found at the scale of an entire organ,
even less for a complete animal or plant whose size ranges
from several centimeters to tens of meters. There exists
therefore a threshold length � below which nutrients or
oxygen can be transported by diffusion, and above which
mass transport has to be achieved through a space-filling
network of “pipes” (which can be capillaries, vessels, or
bronchi). By “space-filling” we mean that any point cho-
sen at random in a living system is never distant from a
fluid transport element by more than about �.

Two types of geometry commonly found in biological
systems satisfy this space-filling condition: i) lattice-type
grids (perhaps random) as for instance the capillary bed
in muscles or in the alveolar membrane of mammals, and
ii) tree-like structures similar to that of the arterial or
bronchial tree of mammals. In order to better understand
the emergence of transport architectures in living systems
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Fig. 1. Real cast of intermediate bronchial trees; left, human;
right, rat (courtesy of E.R. Weibel).

at different scales, one has then to compare the proper-
ties of arborescent systems with that of other space-filling
networks. This will be addressed in the next section.

2 Properties of tree distribution systems

The ubiquity of branched distribution systems in living
organisms has been the subject of many studies for about
two centuries [1–4], and the object of recent interest [5–9].
Tree structures such as veins, arteries, or bronchi are found
in various organs (kidney, liver, lung, . . . ) where they
perform transport, transfer, distribution or filtering func-
tions. All these networks are “space-filling” in the sense
that they feed the entire volume of an organ. Other types
of space-filling networks do exist in living systems such as
for example brain connections. But the brain connection
network is more of a type volume to volume, similar in
that to a complex network.

A specificity of tree structures (or loopless networks)
is that they permit connecting a small source to a volume
in order to perform distribution functions [10–12]. For in-
stance blood is distributed from the heart to the entire
body through the arterial tree, and air from the mouth
and the nose to the volume of the thoracic cage through
the tracheobronchial tree. Conversely, trees can also con-
nect a volume like that of the mammary gland to a small
exit, the papilla. In this paper, we focus on the respira-
tory system of mammalians, and more precisely on the
intermediate tracheobronchial tree [13,14].

The reason for this choice is that the aerodynamics
can be described in this part of the bronchial tree us-
ing the Stokes equation only (generations 5 to 15 in the
human lung). On the opposite, in the upper part of the
mammalian lung airway system (starting with the trachea
and down to generation 5 to 6 in the human lung) the
transport of air is governed by the Navier-Stokes equation
which also accounts for inertial effects [15–19].

Our purpose here is to draw attention on a very pe-
culiar property of the intermediate tree, whose typical ex-
amples are shown in fig. 1. This system simultaneously
exhibits three types of properties that can be seen as con-

stituting a “magic” ensemble. The “magic” here lies in the
fact that a system optimized against one criterion happens
to be also optimized for a totally different criterion. The
three different types of optimality simultaneously observed
in fluid transport are

– energetic efficiency,
– geometric efficiency,
– transit time efficiency.

2.1 Energetic efficiency

We briefly recall the formal argument to find the best
energy-saving tree [8]. We consider a symmetric dichoto-
mous tree as schematized in fig. 2. The effect of airway
geometry on ventilation can be developed as follows. As-
sume that from generation (p− 1) to generation p the di-
ameter and the length of the airway segments are reduced
by a homothetic factor hp. This means that the bronchus
aspect ratio is maintained through generations. Calling R
and V the resistance and volume of a given duct, the h
homothetically reduced duct has a resistance R/h3 since
this resistance is proportional to the duct length L and
inversely proportional to the fourth power of the duct di-
ameter D. (Although the length over diameter ratio of
the bronchi in the intermediate tree are only of the or-
der of 3, which means that end effects cannot be totally
neglected, this is a reasonable approximation [8].) In con-
trast, the volume is multiplied by a factor h3 at each gen-
eration. After p generations, the sizes are reduced by a
factor h1 × h2 × . . . hp−1 so that the total resistance RN

and total volume VN of a tree with (N + 1) generations
(indexed from 0 to N) can be written as

RN = R0 +
N∑

p=1

R0

2p(h1 × . . . × hp)3
, (1)

VN = V0 +
N∑

p=1

2p(h1 × . . . × hp)3 V0. (2)

If Φ is the global airflow, the total pressure drop is
ΔPN = RNΦ and the total dissipation can be written
ΦΔPN . This power loss can be minimized relative to
(h1, . . . , hN−1) under the constraint VN = Ω. The min-
imum of RN on VN = Ω is characterized by the existence
of a Lagrange multiplier μ such that Δ(RN ) = μΔ(VN ).
This leads to h1 = [(Ω−V0)/(2NV0)]1/3 and hi = (1/2)1/3

for i in {2, . . . , N}. Note that the value of the factor
hi = (1/2)1/3 is known for a long time as the “Hess-
Murray law”. Note also that what is really optimized here
is the energy expense per volume which is the important
criterion, since such branching trees are only passive trans-
port systems, the active system being the muscles in the
body or the acini in the mammalian lungs. The volume
of the bronchial tree is called the dead space volume in
physiology (of order 150mL in the human lung [13]) as
it plays no role in gas exchanges. Moreover, cylindrical
pipes with circular cross section have been shown to be
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Fig. 2. Schematic constitution of a general symmetric di-
chotomic tree. Each generation is caracterized by the lengths
Ln and diameters that are reduced by a homothety factor hn,
the resistances Rn, the flux in each individual branch is divided
by 2 at each bifurcation, and the velocity of the fluid is Un.

more energetically efficient than elliptic pipes [20]. In sum-
mary the best energy-saving symmetric dichotomous tree
is self-similar with a constant scaling ratio independent of
the generation.

This could be an indication that evolution has selected
self-similarity for energetic efficiency. This statement has
however to be toned down. Because air viscosity is small,
the viscous losses are only a small part of the “work for
breathing” whereas they are dominant for blood circula-
tion in the arterial tree. This remark will be part of our
later suggestion on phylogenesis.

2.2 Geometric efficiency

As we just saw, the best energetic tree is a self-similar frac-
tal with a fractal dimension equal to dF = ln 2/ ln(21/3)
or dF = 3. It is interesting to note that anatomy measure-
ments of the real bronchial tree have given a value for h
close to 0.85 [8], not far from the optimum. But, recipro-
cally, the fractal dimension of a tree structure is given by
dF = min(3, ln(m)/ ln(1/h)), where m is the number of
branches at each bifurcation (or degree of the tree) and h
the scaling ratio of the branches across generation. So the
smallest scaling ratio that guarantees that for m = 2 the
dimension is equal to 3 is such that 3 = ln 2/ ln(1/h), in
other words h = (1/2)1/3. Therefore, under the only hy-
pothesis that the dichotomous tree must be space-filling,
one finds that the one with the smallest scaling ratio is
also the best energy-saving tree.

Note that what is called “space-filling” does not im-
ply that the total bronchial volume is equal to the lung
volume. It means that any point chosen arbitrarily in the
lung volume is “not far” from a small bronchiole or any
point chosen arbitrarily in a muscle is “not far” from a
small arteriole. For instance, the bronchial tree is known
to occupy only about 4-5% of the total lung volume. On a
mathematical point of view it means that the tree skeleton
has a fractal dimension equal to 3.

2.3 Transit time efficiency

A third “magic” property of this best symmetric tree is
that it exhibits optimal rapidity in providing the shortest
time for the air to travel for a given energy dissipation.
This rapidity is particularly important in pulsatile trees
such as the pulmonary airway system in which the oxygen
delivery has to be achieved in a limited time.

Let us call t0, t1, t2, . . . , tN , the time for the flow
to travel across generation 0, 1, 2, 3, . . . , N , see fig. 2. We
search for the smallest total time T = t0+t1+t2+. . .+tN .
Since there are 2p branches at generation p, the flow rate
crossing each bronchus at generation p is Φ0/2p. The tran-
sit time across generation p is then the volume of one
bronchus divided by the flow rate crossing this bronchus

tp =
π

4
D2

p Lp × 2p

Φ0
. (3)

Hence the total transit time is the sum of the volume of
all bronchi

T = t0 + . . . + tN =
1
Φ0

(
N∑

p=0

2p π

4
D2

p Lp

)
=

VN

Φ0
. (4)

The total transit time across the tree is thus directly de-
termined by the volume of the tree. As a consequence,
the best compromise between energy dissipation and vol-
ume, described in subsect. 2.1, also corresponds to the
best compromise between energy dissipation and transit
time. And this best compromise corresponds to the small-
est scaling ratio for which the tree is also space-filling.
Note that t0 = t1 = t2 = . . . = tN so that the tree is also
isochronal.

In summary the above facts indicate that there exists
what can be called a “best best” tree structure that obeys
simultaneously different criteria. From this, one can sug-
gest that during the course of evolution, natural selection
has met the one among these criteria that was of critical
importance for survival against selection pressure.

For instance, to be an energy-saving distribution sys-
tem was probably of primary importance for the circula-
tion of a viscous fluid like blood, whereas viscous dissipa-
tion in the aerial bronchial tree of mammalian is only a
small part of the work for breathing in air due to the very
small air viscosity as compared to that of blood. If primor-
dial animals with one-way blood circulation were aquatic,
their arterial system could have evolved towards energetic
efficiency, thus creating the basis for a subsequent aerial
cyclic respiration. Note that if the bronchial tree has a
short transit time for respiration at rest, it will also be
efficient for respiration at exercise where the air velocity
is 10 times higher than at rest [14].

Another specific property of such a magic tree is that
the aerodynamic resistance between successive bifurca-
tions is constant, such that the pressure drop between
bifurcations is also constant. This remark is to be used
below in the comparison between tree resistance and what
would be the “lattice resistance”.
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Fig. 3. Schematic representation of a space-filling lattice link-
ing a source, on the left, to a sink uniformly distributed in
(L/�)3 diffusion cells of lateral size �.

2.4 Space-filling networks: loops or trees?

In this section we compare the energies dissipated in an
ordinary network and in the magic “tree” of the same
macroscopic size L, both distributing nutrients down to
an “equivalent” cell size � (below this size, passive diffu-
sion is assumed to be the efficient transport mechanism).
We consider a volumic structure similar to the cubic lat-
tice shown in fig. 3. Suppose we have a source on the
left surface and there exists a volumic sink uniformly dis-
tributed in the volume where the nutrients are consumed.
Each line in fig. 3 represents a micro-pipe, each of these
micro-pipes feeding a “cell” whose volume is proportional
to �3. Let us call r the resistance to feed one micro-pipe.
The global lattice resistance from the source to the op-
posite face of the cube is the individual resistance mul-
tiplied by the number (L/�) of “cells” per line and di-
vided by the number of lines (L/�)2 per face. As a con-
sequence, the global lattice resistance is proportional to
r�/L.

Now consider the optimized tree structure described in
the previous subsection. Since the tree is space-filling, the
number of terminal branches to feed the entire volume is
of order (L/�)3. Now the resistance of the last generation
is equal to the individual branch resistance r divided by
the number of branches in that generation. This last gen-
eration equivalent resistance is then of order r(�/L)3. Each
generation of the tree exhibiting the same resistance, the
global resistance is Nr(�/L)3, where N is the total num-
ber of generations needed to go down from a branch size
about L to the order of �. As a consequence, N satisfies
h−N = L/� or 2N/3 = L/�. Finally the space-filling tree
resistance Rtree is of order

Rtree ≈ 3(ln(L/�)/ ln(2))(r(�/L)3). (5)

To feed a volume L3 with nutrients, a global flow rate Φ
proportional to L3 is necessary. The hydrodynamic power
Phydro dissipated in the flow is proportional to Φ · ΔP
where Φ = ΔP/Rtree and ΔP is the pressure drop between
the entry of the system and each elementary sink. This
pressure ΔP is determined by the very biological process.
Finally the hydrodynamic power Phydro is proportional
to (Rtree)−1, in others words essentially proportional to

the volume L3 (see eq. (5)), if one forgets the logarithmic
factor which is of order of a few units.

The gain in resistance between the lattice network and
the tree structure is then of order G

Rlattice

Rtree
≈ G =

(
L

�

)2

3 ln
(

L
�

)

ln(2)

. (6)

For an organ in which L = 20 cm and � = 200μm (these
are the typical values corresponding to the human lung
for instance), G is of order 3 ·104! In summary, only small
multi-cellular systems can be fed efficiently by diffusion,
larger organs have to be fed by tree structures.

The above comparison is valid whatever the fluid. Note
also that a diffusion time of order of 1 second is close to
the drift time of air from the human mouth or nose to
the volume of the lung and comparable to the time of the
heart beat. In parallel, vascular plants have vascular tis-
sues which circulate resources through the plant. This fea-
ture allows vascular plants to evolve to a larger size than
non-vascular plants, which lack these specialized conduct-
ing tissues and are therefore restricted to relatively small
sizes.

3 Tree optimalities in real living systems?

Can one observe in real systems this tree structure which
seems to simultaneously optimize several independent cri-
teria? One should first discuss the fact that real structures
are found to be somewhat different from the ideal struc-
tures presented above. This has been documented in the
case of the human intermediate bronchial tree where the
scaling ratio is more, when averaged, of the order of 0.85
than the optimal value 0.79. In that sense, this part of the
bronchial tree has a slightly too large dead space volume at
the benefit of an increased robustness of the conductance
towards geometrical variability [8]. This also constitutes a
protection against mild forms of asthma. In a loose sense,
its fractal dimension is larger than 3, but this statement
corresponds to the fact that the infinite tree would not
fit within a finite 3D volume. This situation is allowed in
reality only because the tree is finite. From the point of
view of the transit time, the value 0.85 would increase sig-
nificantly the transit time if the real splitting was exactly
symmetric.

This increased scaling ratio in the intermediate tree is
compensated by a scaling ratio smaller than 0.79 in the
central airways [14, 21]. Also, it is known that the real
geometrical splitting is not symmetric [22–24], giving rise
to a smaller daughter with h < 0.79 and a larger daughter
with h > 0.79, in other words a rapid and a slow branch at
each bifurcation. This indicates that the “averaged” value
of 0.85 does not properly describe the complicated effects
of a succession of rapid and slow bronchi.

In the case of the arterial blood system, it is the oppo-
site; the scaling ratio is a little smaller at the benefit of the
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quantity of blood [25]. Optimizing the amount of blood
for a given energy dissipation was the criterion driving
Hess and Murray in their derivation of the optimal value
h = (1/2)1/3. This value has also been found to be a good
descriptor of the hierarchy of vessels in plants when their
role is uniquely to transport water and do not play simul-
taneously a mechanical role [26]. One should also comment
on the branching asymmetry in real bronchial trees. It is
probably a consequence of their growth in a natural non-
symmetric environment [24–26]. It has been shown that
this could benefit the global conductance which is less
sensitive to bronchus constriction than in the symmetric
tree [8].

There are however drawbacks to the “magical” com-
bined optimal efficiency of these tree structures. First,
their performances strongly depend on the h value [8].
Secondly, the flow distribution at the ends might exhibit
an extreme sensitivity to defects. This can occur for in-
stance in the end distribution of fresh air entering the
pulmonary airway tree if the flow is not strictly divided
into 1/2 and 1/2 at each dichotomous bifurcation, but into
1/2 + α and 1/2 − α. Let us suppose that a similar split-
ting occurs at the next bifurcation. Then the flow will be
divided among the 4 grand-daughter branches according
to (1/2 + α)2, (1/2 − α)(1/2 + α) twice and (1/2 − α)2.
This is the start of a multiplicative process which provides
after N bifurcations a strongly uneven distribution of the
flow, ranging from (1/2 − α)N to (1/2 + α)N with fractal
correlations in space. Such a distribution is called mul-
tifractal [27, 28] and its main characteristic is the strong
unevenness of the fluxes reaching the final branches. In
other words, it is an inherent feature of a tree-like system
to create unequal distribution of the flows. This means
that, for a given flow rate imposed at the entrance, these
“magic” trees have to be regulated in order to be efficient
even distributive systems. This is the case for arteries that
are classically known to be active, but it is a general fact
that a rigid tree with many generations would not be an
efficient distribution system because of its extreme sensi-
tivity to defects.

So the question arise of why we are breathing nor-
mally through an asymmetric tree. The reason is that
the hydrodynamic motor is not at the tree entrance,
the mouth or the nose in humans. It is constituted
by the 30,000 acini that simultaneously breath and
impose comparable flow rates at each of the 30,000
terminal bronchioles of the tracheobronchial tree. The
asymmetry has however a direct consequence: the tran-
sit time for external air to reach each of the indi-
vidual acini is not unique. Oxygenation times are dis-
tributed among the various acini [21, 29]. This avoids
a simultaneous arrival of fresh air inside the whole
lung and provides instead a more steady supply of
oxygen.

The above remarks give a simple but fundamental rea-
son why positive and negative pressure artificial ventila-
tions work differently. In the case of positive pressure arti-
ficial ventilation, it is the external pressure at mouth-nose,
imposed by a respirator, which drives the system and in
this case, the tendency to heterogeneity will in principle

Fig. 4. Human pulmonary acinus (courtesy of E.R. Weibel).
The scale marker is 1mm. The acinus entry is the end of the
transitory bronchiole (tb) and one can observe the first alveolae
on the respiratory bronchiole (rb).

prevail. This might have severe medical consequences. On
the opposite, in the case of negative pressure artificial ven-
tilation driven by electric stimulation of the diaphragm,
the final distribution will be more uniform, as in normal
ventilation [30].

4 Some remarkable properties of the
mammalian respiratory acinus and why do
mammalians need a distribution tree feeding
small acini

Each termination of the bronchial tree, called a terminal
bronchiole, feeds an acinus which is the gas exchange unit
for respiration (shown in fig. 4). This acinus is at the same
time a mini-pump for air. So once again, one finds that two
totally different functions, gas exchange and mechanical
pumping, are achieved by the same organ. To resist the hy-
drodynamic pressure difference, the membrane must have
a minimal strength which means a minimal thickness and
consequently a finite resistance for gas diffusion [31]. The
acinus surface must then be large enough to supply the
required amount of oxygen to the blood. Several parame-
ters govern the global oxygen uptake: air velocity at the
acinus entry, oxygen diffusivity in air, alveolar membrane
permeability, blood hemoglobin content and its reaction
rate with oxygen, and, last but not least, the morphology
of the system which plays an essential role [32]. The prox-
imal acinar regions receive fresh air through the terminal
bronchioles, but the more distal acinar regions, located
deeper than the convection/diffusion transition region and
containing the major exchange surface, are only fed by dif-
fusion. These regions are therefore submitted to diffusion
limitations also called diffusion screening [33]. Qualita-
tively, diffusion screening is the consequence of the fact
that, when O2 molecules diffuse inside the acinus, they
may hit the alveolar membrane and be trapped by blood.
Consequently, air is progressively depleted from its oxy-
gen content as it progresses deeper into the acinar airway
tree [32].
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The oxygen flow rate across the acinar alveolar mem-
brane depends on the relative values of two lengths, Λ and
the so-called “surface perimeter” Lp. The length Λ is the
ratio D/W of the diffusion coefficient of oxygen in air D
over the membrane permeability W [33]. This length Λ is
of purely physico-chemical nature and its value is around
28 cm in the human lung. The “surface perimeter” Lp of
an irregular membrane is the ratio of its area S by its
diameter, the diameter being that of the smallest sphere
embedding the irregular surface of the membrane. If Λ is
larger than Lp the surface works uniformly. On the other
hand, when Lp is larger than Λ, oxygen cannot reach the
less accessible regions and the surface is only partially ac-
tive. The morphometric study of the human acinus yields a
value of Lp ≈ 30 cm for a 1/8 sub-acinus. This remarkable
agreement between the values of Λ and Lp is also found
in the acini of several mammalian species [32]. It strongly
suggests that diffusion screening plays an essential role in
mammalian respiration, and that lung design is adjusted
to cope with this problem. At the same time, it also in-
dicates that too large acini in which Lp would be much
larger than ΛO2 would be poorly working. This is the rea-
son why lungs are not made of a single very large acinus
but are instead constituted of 30,000 small acini found in
the human lung [34], all supplied by the efficient branched
conducting airways described in the previous sections.

It is also interesting to consider the acinus functioning
in terms of energetic efficiency. The potential energy that
is used for oxygen transfer is the entropic term in the
chemical potential. In the case of an ideal solution, the
chemical potential per particle (here O2 molecule) can be
written as

μ = μ0 + kBT ln C, (7)

where kB is the Boltzmann factor, T is the temperature,
and C is the oxygen concentration. The driving poten-
tial for oxygen diffusion between alveolar gas and blood is
the oxygen chemical potential difference between air and
venous blood. Blood is a complex fluid in which oxygen
is essentially trapped in hemoglobin molecules. However,
blood as a whole can be considered in first approxima-
tion as an equivalent fluid in which the oxygen solubility
is the same as the oxygen solubility in the gas. This is
justified by the fact that at equilibrium, or in other words
for identical oxygen partial pressures, one liter of air con-
tains approximately the same quantity of oxygen than one
liter of blood. So the drop of chemical potential between
alveolar gas and venous blood can be expressed as

Δμ = kBT ln
(

Calv

Cv

)
, (8)

where Calv and Cv respectively are the oxygen concen-
tration in the averaged alveolar gas and in the venous
blood. If the solubilities are approximately the same,
then ln(Calv/Cv) = ln(Palv/Pv), where Palv and Pv are
the oxygen partial pressures. Typical values are Palv ≈
100mm Hg and Pv ≈ 40mm Hg, which implies that
Δμ ≈ 0.9 kBT or 23meV. This means that the irreversible
transfer from gas to blood uses an energy of entropic ori-
gin of order of kBT (≈ 1 eV per particle). Note that this

Fig. 5. Acinus-equivalent electric circuit for the oxygen ex-
change between the alveolar gas and blood. In the equivalence
V stands for the chemical potential per particle of order kBT ,
the generator internal resistance RI stands for the access dif-
fusion resistance (DL)−1 and the useful resistance RU stands
for the membrane resistance (WS−1).

energy is only a small part of the total chemical energy
transported by an oxygen molecule that is contained in
the term μ0 of the chemical potential of the order of 1 eV.

Now one can ask the following question: what are the
exchanger conditions to make a better use of the entropic
energy of oxygen in air? The problem can be formulated
as a standard electric problem in which a source with an
electric potential V and an internal resistance RI feeds a
“useful” resistance RU , see fig. 5. The used power is RUI2

and its maximum can easily been obtained from Ohm’s
law: it is found to be maximum when RU = RI . This is a
classical result in electric network theory. Here the prob-
lem is similar, provided that one uses kBT for V , (DL)−1

for the internal resistance and (WS−1) for the “useful” re-
sistance RU . So the equality condition between the diffu-
sion resistance and the permeation resistance corresponds
to the best configuration to extract the maximum power
from a purely entropic generator. In that sense, evolution
has selected the best entropic machine. To our knowledge,
this is a type of optimization that has never been men-
tioned in the past.

Under the same criterion, one should consider the case
of the respiration of fishes in water. A general expres-
sion for the permeability of a membrane of thickness δ
is W = DO2,H2O/δ where DO2,H2O is the diffusion coef-
ficient of oxygen in water. Then, for fishes, the length is
equal to DO2,H2O/(DO2,H2O/δ) = δ. And indeed the gills
are arranged in a simple linear manner with a length of
order 50μm and the membrane thickness, in fishes, is of
the order of 40μm [35]. In that sense, oxygen exchang-
ers in both mammalians and fishes obey the same “best
entropic machine” optimization.

5 A phylogenetic point of view induced by
physics, what came first?

In summary the respiration of mammals obeys different
types of optimalities: best use of mechanical energy in
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Fig. 6. Small bronchi, bronchioles (in white) and pulmonary
arteries and veins in the human lung. The pulmonary arteries
transport veinous blood but they have been coloured here in
red while veins are coloured in blue (Courtesy of E.R. Weibel).

the tracheobronchial tree and best use of entropic energy
in the acini systems to capture oxygen. But the mam-
malian lung tracheobronchial tree presents also geometric
and kinematic optimization. Since this system is the result
of natural selection, the obvious question arises: during
evolution, what came first?

The general idea behind our suggestion is, following
F. Jacob, that of the role of “tinkering” in evolution [36].
This means that a genetic system selected for one specific
property can be used later for a different property if both
combined properties are simultaneously “optimal”. Sev-
eral systems have already been found to be used by living
organisms for very different functions. One example is the
RuBisCO enzyme that is used for sulfur metabolism [37].
Another example is the crystallin genes issued from chape-
rone-like proteins [38, 39]. Such findings have been ex-
pressed as the concept of “the book as a paperweight”
by Danchin [40]. The same processes are also known as
gene sharing [41] or acquisitive evolution.

Here we discuss the purely physical properties of the
bronchial tree and try to answer the question: what came
first between energy, geometry, and time performances?
In fact, space-filling is a prerequisite because the volume
of a living system has to be fed. As we recalled, diffusive
transport is effective at small scales and diffusion is itself
space filling. But larger systems could not emerge without
the emergence of distributive tree structures. At the scale
of an organ, and even more at the scale of an animal,
diffusion is far too slow to bring nutrients at the speed
necessary to support life. The transport system has then
to be space-filling.

In Nature, there are two large classes of space-filling
geometry: networks with loops or trees. Both could exist
but the tree is, as discussed above, much more efficient
from the energetic point of view [11]. So, our suggestion is
that tree distribution systems have been selected together
with the growth of large multi-cellular systems and later

the emergence of animals. Having an energetically efficient
distribution system was probably of primary importance
for the circulation of a viscous fluid like blood. In primor-
dial aquatic animals with one-way blood circulation, their
arterial system would therefore have necessarily evolved
by natural selection towards energetic efficiency.

In contradistinction, in normal conditions, the viscous
dissipation in the aerial bronchial tree of mammalian is
only a small part of the work for breathing because the
viscosity of air is negligible as compared to the viscosity of
blood. But once the genetic material was available it could
have been used for creating the basis for a subsequent
aerial, two-way pulsatile respiration, i.e. mammalian res-
piration. So the phylogenesis that physics suggests starts
from space-filling and then proceeds to energetic efficiency
to be finally used for the aerial respiration of mammals.
Although this does not constitute a proof, the visual ob-
servation of fig. 6 suggests that the same genetic material
could have been at work in the growth of arteries, veins
and bronchi.
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