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Abstract. We present theoretical and numerical results for the screened Casimir effect between perfect
metal surfaces in a plasma. We show how the Casimir effect in an electron-positron plasma can provide
an important contribution to nuclear interactions. Our results suggest that there is a connection between
Casimir forces and nucleon forces mediated by mesons. Correct nuclear energies and meson masses appear
to emerge naturally from the screened Casimir-Lifshitz effect.

1 Introduction

The Casimir and Lifshitz theories of intermolecular (dis-
persion) forces [1–3] have occupied such a vast literature
that little should remain to be said [4–8]. However, there
exist still many gaps in our knowledge of the theory of
dispersion forces. For instance, we will show in this paper
that the presence of any non-zero plasma density between
two perfectly reflecting plates fundamentally alters their
long-range Casimir interaction. Such finite plasma densi-
ties are always present near metal surfaces. These results
are discussed in detail in Section 2 where we give theo-
retical and numerical results for the Casimir interaction
between two perfect metal surfaces in the presence of a
plasma.

The importance of Casimir forces for electron stabil-
ity [9–13], particle physics, and in nuclear interactions [14],
has been predicted over the years. The problem we in-
tend to revisit is similar in spirit to the old story called
“the Casimir mousetrap” for the stability of charged elec-
trons [10,13]. The negative charges on an electron surface
give rise to a repulsive force between the different parts
of the surface that has to be counteracted by an attrac-
tive force in order for the electron to have a finite radius.
Casimir proposed that such attractive Poincaré stresses
could come from the zero-point energy of electromagnetic
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vacuum fluctuations [9]. A number of attempts have been
made to compute such Casimir energies [10–13]. However,
all concluded that while the magnitude of the interaction
was correct, it had the wrong sign. Further it gave a re-
pulsive force [10–13].

Finite plasma densities are present between nuclear
particles due to the presence of the plasma of the fluctuat-
ing electron-positron pairs constantly created and annihi-
lated. The magnitude and asymptotic form of the screened
Casimir potential between reflecting surfaces in the pres-
ence of this electron-positron plasma suggest a possible
connection between Casimir forces and nucleon forces [14].
In Section 3 we proceed to explore this intriguing similari-
ties of the screened Casimir potential with the Yukawa po-
tential for nuclear particles as mediated by mesons. Essen-
tially correct nuclear energies, meson masses and meson
lifetimes appear to emerge naturally from the Casimir-
Lifshitz theory. When taken at face value, the screened-
Casimir model of the Yukawa potential would offer an
alternative explanation of nuclear forces as being due to
virtual electron-positron excitations.

A somewhat complementary effect is the Casimir force
due to electronic wave-function overlap as discussed in ref-
erence [15]. In the latter case, the force results from real
plate electrons whose evanescent wave functions exponen-
tially decay into the gap between the plates. On the con-
trary, in our scenario virtual electron-positron pairs in the
space between the plates mediate the force.
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2 Casimir effect between perfect metal
surfaces in the presence of a plasma

Consider the Casimir-Lifshitz interaction between ideal
metal surfaces separated by a plasma of dielectric
permittivity

ε(iω) = 1 +
4πρe2

mω2
= 1 +

ω2
p

ω2
, (1)

where the plasma frequency is identified as ω2
p = 4πρe2/m,

ρ is the number density of the plasma, m the electron
mass, and e the unit charge. We define some additional
variables ρ̄ = ρe2

�
2/

(
πmk2T 2

)
, κ = ωp/c (note the oc-

currence of a factor mc2 in the screening parameter κ),
and x = 2kT l/(�c). In these expressions k is Boltzmann’s
constant, � is Planck’s constant, T the effective temper-
ature of the plasma, c is the velocity of light, and l the
distance between the plates. The exact expressions for the
Casimir-Lifshitz free energy between both real and perfect
metal surfaces across a plasma are given in Appendix A.
We have found (see Appendix B for a derivation) that the
asymptotic interaction energy can at high temperatures
and/or large separations be written as:

F (l, T ) = Fn=0 + Fn>0, (2)

Fn=0(l, T ) ≈ −kTκ2

2π
e−2lκ

[
1

2lκ
+

1
4l2κ2

]
, (3)

Fn>0 ≈ (kT )2

l�c
e−πρ̄xe−2πx + O

(
e−x2

)
. (4)

Here we have separated the zero and finite frequency con-
tributions. These expressions may be useful for theoret-
ical comparisons with experimentally measured Casimir-
Lifshitz forces [6,16–25] between metal surfaces interacting
across a high density plasma.

We first recall the present understanding of Casimir
effect between real metal surfaces in the absence of
any intervening plasma. Figure 1 shows the experimen-
tal result of Lamoreaux [16,17], compared to the theo-
retical results of Boström and Sernelius [18]. All curves
show the interaction energy divided by the result of the
ideal Casimir gedanken experiment at zero temperature,
−�cπ2/

(
720d3

)
. The lowest curve is for gold at room

temperature. It was derived using tabulated optical data
for gold as input. Use of the Drude model gives over-
lapping results. To be noted is that theory and experi-
ment clearly disagree for the cluster of experimental points
around d = 1 μm. The experimental results agree bet-
ter with the zero-temperature results (upper solid curve)
and even with the zero- or finite-temperatures results for
ideal metals (the Casimir gedanken experiment, dotted
curves). The agreement is even better with the theoretical
room temperature result obtained when using the plasma
model.

This puzzling behavior has given rise to a long-
standing controversy in the field. We note that the zero
frequency part of the Casimir interaction between real
metal surfaces depends on how the dielectric function of

0.5

1

1.5

2

0 1 2 3 4

E
ne

rg
y 

C
or

re
ct

io
n 

Fa
ct

or

d (μm)

d Perfect metal
T=300 K; T=0

Gold
T=300 K; T=0

Expt. 300K
Lamoreaux

Fig. 1. Energy correction factor for two gold plates in the ab-
sence of any intervening plasma. The filled squares with error
bars are the Lamoreaux’ experimental [16,17] values from the
torsion pendulum experiment. The dashed curves are the per-
fect metal results. The thick solid curves are the results for real
gold plates at zero temperature and at room temperature [18].
The dielectric properties for gold was obtained from tabulated
experimental optical data.

the metal surfaces is treated. Different theoretical groups
have found very different results [18–22]. A most valuable
property of the Lamoreaux experiment [16,17] was that it
was carried out at large separations. Lamoreaux was also
involved in a more recent version of his old experiment [23]
(cf. also the comments of Milton [7]), where plate separa-
tions between 0.7 and 7 μm were tested. Quite convinc-
ingly, the theoretical predictions based upon the Drude
model were found to agree with the observed results to
high accuracy.

The thermal Casimir effect is however a many-facetted
phenomenon and care has to be taken about the electro-
static patch potentials, which cause uncertainties in the
interpretation of the data in the mentioned experiment.
There are other experiments, in particular the very ac-
curate one of Decca et al. [26], which yield results appar-
ently in accordance with the plasma model rather than the
Drude model. The reason for this conflict between experi-
mental results is not known in the community. It has been
suggested occasionally that it might have something to do
with the so-called Debye shielding, which can change the
effective gap between plates from the geometrically mea-
sured width. But the experimentalists themselves turn out
to be skeptical towards such a possibility (an elementary
overview of the temperature dependence of the Casimir
force is recently given in Ref. [27]). There is clearly an
urgent need for more experiments and theoretical analy-
sis focusing on Casimir-Lifshitz forces in different systems
that include metal surfaces.

As we have shown so far, the presence of any inter-
vening plasma is of importance for the long range interac-
tion energy. We explore next the effect on the energy cor-
rection factor for different plasma densities between two
ideal surfaces (see Fig. 2). Again, all curves show the in-
teraction energy divided by the result of the ideal Casimir



Page 3 of 9

10-5

10-4

10-3

10-2

10-1

100

10-1 100

n = 0, 1015

n  0, 1015

n=0, 1014

n 0, 1014

n = 0, 1013

n  0, 1013

n = 0, 0

n  0, 0

E
ne

rg
y 

C
or

re
ct

io
n 

Fa
ct

or

d (μm)

Fig. 2. Energy correction factor for two perfect metal plates
interacting across a plasma. The curves are the results for per-
fect metal plates at room temperature for different plasma fre-
quencies (ωp in units of rad/s) for the intervening plasma. We
show the results for the n = 0 and n ≥ 0 contributions to the
interaction free energy.

gedanken experiment at zero temperature in the absence
of a plasma. At large separation the result is strongly
influenced by intervening plasma, leading to a consider-
able reduction of the interaction energy. The results show
that even weak intervening plasmas can strongly affect
Casimir force measurements. The possible presence of spu-
rious plasma densities thus has to be considered carefully.

We next investigate the accuracy of the asymptotes (3)
and (4) by comparing their predictions with exact numer-
ical results.

Figure 3 shows the ratio between numerically calcu-
lated free energy between two perfect metal plates across
a plasma (ωp = 1014 rad/s) to the corresponding asymp-
totes given in the text. We see that in this case the asymp-
tote for the n = 0 term is very accurate. For the n > 0
and n ≥ 0 contributions this ratio only goes towards one
at large separations. The asymptotes become better for
higher plasma densities.

3 A contribution from screened Casimir
interaction in nuclear interactions

We will now point out a potential connection with the
meson theory. That is, if we take the Casimir expansion
without a plasma, the first three terms (see Eq. (7) be-
low) are: (1) the usual zero-point fluctuation energy (also
equivalent to current-current correlations); (2) a “chemical
potential” term, identifiable as the energy of an electron
positron pair sea (see Landau and Lifshitz [28]); (3) the
black body radiation in the gap. One can then ask how
electromagnetic (EM) theory can give rise to weak inter-
actions of particle physics. Such contribution from EM
theory comes out if one equates the zero-point energy to
the black body radiation term. That gives an equivalent
density for the electron positron pair sea and the energy of
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Fig. 3. Asymptotic correction factor for two perfect metal
plates interacting across a plasma (ωp = 1014 rad/s). The re-
sults show the ratio between numerically calculated energies
and the corresponding asymptotes given in the text. There is
very good agreement (ratio close to one) for the n = 0 con-
tribution in the entire range considered. For n > 0 and n ≥ 0
the curves go towards one at large surface separations. Note
that the asymptotes become more accurate for higher plasma
densities.

interaction of about 8 MeV. This agrees with the experi-
mentally found nuclear interaction energy. The form of the
interaction with a plasma in the gap is the same as that
for the Klein-Gordon-Yukawa potential with the plasma
excitation corresponding to and identical with the π0 me-
son mass (this assumes a plate size of 1 fermi squared in
area and that the planar results translated roughly over
to that for spheres).

Now we will explore these ideas in more detail. The
screened Casimir free energy asymptotes in the previous
section can be compared with the Yukawa potential be-
tween nuclear particles at distances large compared with
the screening length lπ = �/mπc (mπ is the mass of the
mediating meson),

F (l, T ) ∝ e−l/lπ . (5)

To test if the idea can be correct, we first extract the
meson mass by taking the exponents in the Fn=0 term
given in the previous section and the Yukawa potential to
be equal:

mπ =
4e�

c2

√
π(ρ+ + ρ−)

m
. (6)

Since we know the meson mass (135 MeV) we esti-
mate the screening length to be 1.458 fm and we also
find the density of electrons and positrons that would
be required to generate this Yukawa potential from the
Casimir effect. The equilibrium of electron positron pro-
duction can at high temperatures be written as ρ± =
3ζ(3)k3T 3/(2π2

�
3c3) [28]. This means that the required

effective temperature of nuclear interaction via a screened
Casimir interaction is 3.2 × 1011 K.

We now address the important question where the
energy to generate this local electron plasma can come
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from [14]. Feynman speculated that high energy potentials
could excite states corresponding to other eigenvalues,
possibly thereby corresponding to different masses [29].
It turns out that the low-temperature Casimir interac-
tion, i.e., without an intervening plasma, by itself could be
capable of generating the effective temperature required
to obtain the plasma. The connection between tempera-
ture and density of electrons and positrons given above is
exploited in the expression for low temperature Casimir
interaction between perfectly reflecting surfaces. In the
absence of an intervening plasma, it can be written as
equation (35) in reference [30]:

F (l, T ) ≈ −π2
�c

720l3
− ζ(3)k3T 3

2π�2c2
+

π2lk4T 4

45�3c3
. (7)

This can further be re-written as:

F (l, T ) ≈ −π2
�c

720l3
− π(ρ− + ρ+)�c

6
+

π2lk4T 4

45�3c3
, (8)

where the first term is the zero-temperature Casimir en-
ergy, the third is the blackbody energy, and the second has
been rewritten in terms of electron and positron densities.
If we assume that the entire zero-temperature Casimir en-
ergy is transformed into blackbody energy (which at high
temperatures can generate an electron-positron plasma)
we can estimate the temperature as T ≈ �c/2lk. This
will at a distance of 3.6 fermi give the required effective
temperature (at the distances discussed above the effec-
tive temperature is even larger, around 2.3 × 1012 K). It
is intriguing that a cancellation of the Casimir zero-point
energy and the blackbody energy term, just like the can-
cellation of the n = 0 term at low temperatures, gives the
right result.

The screened Casimir interaction between two per-
fectly reflecting surfaces, with estimated cross section
of 1 fermi squared a distance 0.5 fermi apart, receives
around 4.25 MeV from the n = 0 term and 3.25 MeV
from the n > 0 terms. While the screening length of the
n = 0 term is defined above we find that the screening
length of the n > 0 terms also comes out of the right or-
der of magnitude (it is within the crude approximations
made of the order one fermi). The nuclear interaction as a
screened Casimir interaction would thus receive approxi-
mately equal contributions from the classical (n = 0) and
quantum (n > 0) terms. The result compares remarkably
well with the binding energy of nuclear interaction that is
around 8 MeV.

If the arguments we have given connecting nuclear and
electromagnetic interactions have any substance, it is hard
to avoid the speculation that the standard decomposition
in nuclear physics into coulomb and nuclear force contribu-
tions may not be entirely correct. In the insightful words of
Dyson: “the future theory will be built, first of all upon the
results of future experiments, and secondly upon an un-
derstanding of the interrelations between electrodynamics
and mesonic and nucleonic phenomena” [31]. The prob-
lem is precisely equivalent to that which occurs in physical
chemistry where standard theories have all been based on
the ansatz that electrostatic forces (treated in a nonlinear

theory) and electrodynamic forces (treated in linear ap-
proximation by Lifshitz theory) are separable. The ansatz
violates both the Gibbs adsorption equation and the gauge
condition on the electromagnetic field [32]. When the de-
fects are remedied a great deal of confusion appears to
fall into place. If these results are not acceptable within
the standard model one must still consider the presence
of this additional electromagnetic fluctutation interaction
energy between nuclear particles.

4 Conclusions

We have explored the effect of an intervening plasma on
the Casimir force between two perfectly conducting plates.
The analytically derived asymptotes for large plate sep-
arations show that even spurious plasma densities can
considerably reduce the expected Casimir force. The ef-
fect of plasmas should therefore carefully be considered in
Casimir force measurements.

In addition, the derived asymptotes show an in-
teresting structural analogy with the Yukawa potential
of nuclear interactions. We have explored this analogy
to discuss whether the electromagnetic Casimir effect
can possibly explain these interactions. The compari-
son yields predictions for the required virtual electron-
positron plasma density which, however, is only achiev-
able at very large ambient temperatures. If the potential
connection to nuclear interactions is correct, then we spec-
ulate that the charged π+ and π− mesons would come out
to be bound positron-plasmon and electron-plasmon exci-
tations in the electron-positron plasma.

Apart from these speculations, our main idea has been
to investigate to what extent the screened Casimir effect
between perfect metal surfaces, intervened by an electron-
positron plasma, can be applied to estimate nucleon forces
mediated by mesons. Figures 2 and 3 show the effect of
plasma screening; especially the large suppression of the
Casimir energy when the plasma density is large, is clearly
shown in Figure 2. Our main findings are that nuclear
energies and meson masses emerge numerically of the right
order of magnitude, thus indicating that our basic idea is
a viable one.

Of course, the ideas explored in this paper are some-
what speculative. In principle, although the Casimir en-
ergy has the right order of magnitude to provide the re-
quired temperature, one may object that it is not evident
how this energy can be converted to thermal radiation.
The point we wish to emphasize here is that the present ar-
guments, although incomplete, may serve as a useful start-
ing point for further research in this direction, perhaps
within the framework of quantum statistical mechanics.

A final comment: use of the electrodynamic Casimir
effect in the context of nuclear physics is of course not
new. For instance, in hadron spectroscopy viewed from the
standpoint of the MIT quark bag model it has long been
known that the zero-point fluctuations of the quark and
gluon fields may generate a finite zero-point energy of the
form Ezp = −Z0/r, for massless quarks. The constant Z0



Page 5 of 9

is not firmly grounded theoretically, but serves a phe-
nomenological term fitting the experimental data (a clas-
sic review article in this field is that of Hasenfratz and
Kuti [33]). The phenomenological quark model in which
the r-dependent part Δm(r) of the effective quark mass
m(r) varies according to a Gaussian, Δm(r) ∝ −e−r2/R2

0 ,
can also be regarded as an example of essentially the same
kind [34].
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Appendix A: Casimir-Lifshitz free energy

One way to find retarded van der Waals or Casimir-
Lifshitz interactions between two objects interacting
across a medium is in terms of the electromagnetic nor-
mal modes of the system [36,37]. For planar structures the
interaction energy per unit area can be written as:

E = �

∫
d2q

(2π)2

∞∫

0

dω

2π
ln [fq (iω)] , (A.1)

where fq is the mode condition function with fq (ωq) = 0
defining electromagnetic normal modes. Equation (A.1) is
valid for zero temperature and the interaction energy is
the internal energy. At finite temperature the interaction
energy is a free energy and can be written as:

F =
∞∑

n=0

Fn =
1
β

∫
d2q

(2π)2

∞∑

n=0

′ln [fq (iξn)] , (A.2)

where β = 1/kT , and the prime on the summation sign
indicates that the term for n = 0 should be divided by
two. The integral over frequency in equation (A.1) has
been replaced by a summation over discrete Matsubara
frequencies

ξn =
2πn

�β
; n = 0, 1, 2, . . . (A.3)

For planar structures the quantum number that character-
izes the normal modes is q, the two-dimensional (2D) wave
vector in the plane of the interfaces. Two mode types can
occur: transverse magnetic (TM) and transverse electric
(TE). These dictate the form through the wave amplitude
reflection coefficients, r. For instance, for two planar ob-
jects in a medium, corresponding to the geometry 1|2|1,
the mode condition function is given by:

fq = 1 − e−2γ2dr12
2, (A.4)

where d is the thickness of intermediate medium, and the
reflection coefficients for a wave impinging on an interface
between medium 1 and 2 from the 1-side given as:

rTM
12 =

ε2γ1 − ε1γ2

ε2γ1 + ε1γ2
, (A.5)

and

rTE
12 =

(γ1 − γ2)
(γ1 + γ2)

, (A.6)

for TM and TE modes, respectively. Here, γj stands for

γi(ω) =
√

q2 − εi (ω) (ω/c)2, (A.7)

where εi (ω) is the dielectric function of medium i, and c
the speed of light in vacuum.

For two perfectly conducting plates (rTE
12 = −1,

rTM
12 = 1), the Casimir energy (A.2) across a dissipation-

free plasma takes the simple form

F (l, T ) =
kT

π

∞∑

n=0

′
∫ ∞

0

dqq ln
[
1 − e−2l

√
q2+(ξn/c)2+κ2

]
,

(A.8)
recall that κ = ωp/c. By a simple variable substitution,
the first term in the Matsubara sum can be cast into the
alternative form

Fn =0(l, T ) =
kT

2π

∫ ∞

κ

dtt ln
(
1 − e−2lt

)
. (A.9)

Appendix B: Asymptotic Casimir free energy
in a plasma

Exact treatments of Casimir forces between perfect metal
surfaces across a plasma using the above expressions typ-
ically give asymptotic expansions that are not uniformly
valid. The treatment we present here gives a different re-
sult. Our starting point is the above formula (A.8) for
the interaction of two perfectly conducting plates ac-
cross an intervening plasma as re-written by Ninham and
Daicic [30,37,38].

F (l, T ) = − kT

4πl2
1

2πi

∫

c

ds
Γ (s)ζ(s + 1)

(s − 2)(2πx)s−2

×
∞∑

n=0

′(n2 + ρ̄)
1−s/2

. (B.1)

The zero frequency (n = 0) term gives the following
contribution,

Fn=0(l, T ) = − kT

8πl2
1

2πi

∫

c

ds
Γ (s)ζ(s + 1)

(s − 2)(2κl)s−2
, (B.2)

Fn=0(l, T ) =
kT

2π

∫ ∞

κ

dtt ln
(
1 − e−2lt

)
, (B.3)

which at large separations becomes [30]:

Fn=0 ≈ −kTκ2

2π
e−2lκ

[
1

2lκ
+

1
4l2κ2

]
. (B.4)
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The interaction free energy can be written as [30]:

F (l, T ) = − kT

8πl2
1

2πi

∫

c

ds
Γ (s)ζ(s + 1)

(s − 2)(2πx)s−2

× ζG(−1 + s/2, ρ̄), c > 3, (B.5)

ζG(z, a) = 2ζEH(z, a) + a−z = 2
∞∑

n=1

1
(n2 + a)z + a−z

(B.6)

where as discussed in detail by Ninham and Daicic the
generalized Epstein-Hurwitz ζ function ζG is meromorphic
and has simple poles in the complex plane at z = −k+1/2
(k = 0, 1, 2, . . .) [30]. In the limit of low temperatures or
distances x � 1 they found (see Ref. [30] for the complete
expression)

F (l, T ) =
−π�c

720l3

[

1 − 15
ρe2

�
2

(πmk2T 2)

(
2kT l

�c

)2

− . . .

]

(B.7)
where at low temperatures the n = 0 term cancels out a
contribution from the higher frequency terms.

It is possible with some algebra to express the Lifshitz
free energy between two ideal metal plates with interven-
ing plasma in the following form (useful for deriving the
asymptotes considered in this contribution):

F (l, T ) = − kT

4πl2
η(l, T ) =

−kT

4πl2
[
πx3I (ρ̄, x)

]
. (B.8)

The integral I consists of two parts,

I = I1 + I2, (B.9)

where

I1 =
∫ ∞

0

dye−πρ̄yy−5/2ω̄
(
x2/y

)
, (B.10)

and

I2 =
∫ ∞

0

dye−πρ̄yy−5/2ω̄
(
x2/y

)
2ω̄(y), (B.11)

respectively.
The function ω̄(y) appearing in both integrands is de-

fined as [38],

ω̄(y) ≡
∞∑

n=1

e−n2πy ≡ 1
2

{
−1 + y−1/2 [1 + 2ω̄(1/y)]

}
.

(B.12)
The sum converges faster the larger the y-value. To make
use of this fact we divide the integration range for I1 into
two parts and use the two different expressions for the sum
in the two resulting integrals. Thus,

I1 = H1 + H2, (B.13)

where

H1 =
∫ ∞

x2
dye−πρ̄yy−5/2

×
[

1
2

(
−1 +

√
y/x2

)
+

√
y/x2ω̄

(
y/x2

)]
, (B.14)

and

H2 =
∫ x2

0

dye−πρ̄yy−5/2ω̄
(
x2/y

)
, (B.15)

respectively.
The integrand in I2 has a product of two ω̄ functions

with different arguments. Here we divide the integration
range into three regions and choose the form of the sum
that gives the fastest convergence. Under the assumption
that x > 1 we have:

I2 =
∫ 1

0

dye−πρ̄yy−5/2ω̄
(
x2/y

)

×
[
−1 + y−1/2 (1 + 2ω̄(1/y))

]

+ 2
∫ x2

1

dye−πρ̄yy−5/2ω̄
(
x2/y

)
ω̄(y)

+
∫ ∞

x2
dye−πρ̄yy−5/2ω̄(y)

×
[
−1 +

√
y/x2

(
1 + 2ω̄

(
y/x2

))]

= J1 + J2 + J3 + J4 + J5 + J6 + J7, (B.16)

where

J1 = 2
∫ x2

1

dye−πρ̄yy−5/2ω̄
(
x2/y

)
ω̄(y), (B.17)

J2 =
2
x

∫ ∞

x2
dye−πρ̄yy−2ω̄(y)ω̄

(
y/x2

)
, (B.18)

J3 = 2
∫ 1

0

dyy−3ω̄(1/y)ω̄
(
x2/y

)
e−πρ̄y, (B.19)

J4 = −
∫ ∞

x2
dye−πρ̄yy−5/2ω̄(y), (B.20)

J5 =
1
x

∫ ∞

x2
dye−πρ̄yy−2ω̄(y), (B.21)

J6 = −
∫ 1

0

dye−πρ̄yy−5/2ω̄
(
x2/y

)
, (B.22)

and

J7 =
∫ 1

0

dye−πρ̄yy−3ω̄
(
x2/y

)
, (B.23)

respectively.
We now add the two I terms and recombine the inte-

gral terms to find:

I = I1+I2 = J1+J2+J3+K1+K2+K3+K4+K5, (B.24)

where

K1 =
1
x

∫ ∞

x2
dye−πρ̄yy−2

[
1
2

+ ω̄(y)
]

, (B.25)

K2 =
−1
x

∫ ∞

x2
dye−πρ̄yxy−5/2

[
1
2

+ ω̄(y)
]

, (B.26)

K3 = J7, (B.27)

K4 =
1
x

∫ ∞

x2
dye−πρ̄yy−2ω̄(y/x2), (B.28)
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and

K5 =
∫ x2

1

dye−πρ̄yy−5/2ω̄
(
x2/y

)

=
1
x3

∫ x2

1

dye−πρ̄x2/y√yω̄(y), (B.29)

respectively.
In K4 we let y → x2ξ,

K4 =
1
x3

∫ ∞

1

dξe−πρ̄x2ξξ−2ω̄(ξ), (B.30)

and let ξ → 1/y, use the definition of ω̄(y), and separate
into three terms,

K4 = M1 + M2 + M3 (B.31)

where

M1 =
−1
2x3

∫ 1

0

dye−πρ̄x2/y =
−1
2x

∫ ∞

x2
dye−πρ̄yy−2,

(B.32)

M2 =
1

2x3

∫ 1

0

dy
√

ye−πρ̄x2/y =
1
2

∫ ∞

x2
dye−πρ̄yy−5/2,

(B.33)

and

M3 =
1
x3

∫ 1

0

dy
√

ye−πρ̄x2/yω̄ (y) , (B.34)

respectively.
M1 and M2 exactly cancel with the terms with 1/2 in

K1 and K2. Now we combine the expressions for K4 and
K5 and insert into the expression for I,

I = I1 + I2 = J1 + J2 + J3 + K3 + N1 + N2, (B.35)

where

N1 =
1
x

∫ ∞

x2
dye−πρ̄y(y−2 − xy−5/2)ω̄(y), (B.36)

and

N2 =
1
x3

∫ x2

0

dye−πρ̄x2/y√yω̄(y), (B.37)

respectively.
Of these terms J2, J3, K3 and the term

∫ ∞
x2 are all

O(e−x2
) and we may drop them. So we have apart from a

term O(e−x2
) the following expressions:

η(l, T ) = η1 + η2 = πx3(I1 + I2), (B.38)

where

η1 ≈ π

∫ x2

0

dy
√

ye−πρ̄x2/yω̄(y), (B.39)

and since

η1 ≈ π

∫ ∞

0

dy
√

ye−πρ̄x2/yω̄(y) − O
(
e−x2

)
, (B.40)

we may write

η1 ≈ π

∫ ∞

0

dy
√

ye−πρ̄x2/yω̄(y). (B.41)

Using the definition of ω̄(y) and the following
representation:

e−y =
1

2πi

∫ C+i∞

C−i∞
dpy−pΓ (p), Re(p) = C > 0, (B.42)

we obtain

η1 ≈ π

∫ ∞

0

dy
√

y

∫ C+i∞

C−i∞
dp

∞∑

n=1

Γ (p)
(n2πy)p e−πρ̄x2/y.

(B.43)
With a variable substitution

κ2l2 = π2ρ̄x2 = 4πρe2l2/
(
mc2

)
,

we find

η1 ≈ 1√
π

∫ ∞

0

dy
√

y

∫ C+i∞

C−i∞
dp

∞∑

n=1

Γ (p)
(n2y)p

e−κ2l2/y

(B.44)
and using the Riemann ζ function,

η1 ≈ 1√
π

∫ C+i∞

C−i∞
dpΓ (p)ζ(2p)

(κl)3

(κl)2p

∫ ∞

0

dyyp−5/2e−y.

(B.45)
Integration over y results in

η1 ≈ (κl)3√
π

∫ C+i∞

C−i∞
dp

Γ (p)ζ(2p)
(κl)2p Γ (p− 3

2 ), Re(p) = C > 3
2 .

(B.46)
We now exploit relations for the Γ function:

Γ (p − 3/2) =
Γ (p + 1/2)

(p − 1/2)(p − 3/2)
, (B.47)

and

Γ (p)Γ (p + 1/2) =
√

π21−2pΓ (2p), (B.48)
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to obtain

η1 ≈ 4(κl)2
∫ c+i∞

c−i∞
dp

Γ (p)ζ(p + 1)
(2κl)p(p − 2)

= 4(κl)2
∫ c+i∞

c−i∞
dpΓ (p)

∞∑

n=1

1
np+1(2κl)p(p − 2)

= 2(κl)2
∫ c+i∞

c−i∞
dpΓ (p)

∫ ∞

0

dxx

(x2 + 1)p/2(2κl)p

×
∞∑

n=1

1
np+1

= 2(κl)2
∫ ∞

0

dxx
∞∑

n=1

n−1e−2κln
√

x2+1

= −2(κl)2
∫ ∞

0

dxx ln
(
1 − e−2κl

√
x2+1

)

= −2l2
∫ ∞

κ

dtt ln
(
1 − e−2lt

)
. (B.49)

The free energy from η1 is then seen to give a contribution
equal to the zero frequency part of the Lifshitz-Casimir
energy between ideal metal surfaces with an intervening
plasma [30],

F1(l, T ) =
kT

2π

∫ ∞

κ

dtt ln
(
1 − e−2lt

)
. (B.50)

The remaining η term is

η2 ≈ 2πx3

∫ x2

1

dyy−5/2e−πρ̄yω̄(y)ω̄
(
x2/y

)
. (B.51)

Now, since

ω̄(y) =
∞∑

n=1

e−n2πy =
∞∑

n=0

e−π(n+1)2y, (B.52)

we have

e−πy < ω̄(y) <
e−πy

1 − e−2πy
, (B.53)

and
∫ x2

1

dyy−5/2e−πρ̄ye−πye−πx2/y < I2

<

∫ x2

1

dyy−5/2 e−πρ̄ye−πye−πx2/y

(1 − e−2πy)(1 − e−2πx2/y)

<

∫ x2

1

dyy−5/2 e−πρ̄ye−πye−πx2/y

(1 − e−2π)2
. (B.54)

Apart from a very small uncertainty (1− e−2π)2 we have:

η2 ≈ 2πx3

∫ x2

1

dyy−5/2e−πρ̄ye−πye−πx2/y, (B.55)

and with the substitution y → yx we have

≈ 2πx3/2

∫ x

1/x

dyy−5/2e−πρ̄xye−π(y+1/y)x, (B.56)

which for x → ∞ (large separations or high temperatures)
produces a simple final expression. To find this we notice
that the integral has a steep maximum. Take f(y) = y +
1/y, then f ′(y) = 1 − 1/y2 is equal to zero at y0 = 1 and
f(y0) = 2 and f ′′(y0) = 2. Thus, we may write

η2 ≈ 2πx3/2

∫ ∞

−∞
dye−πρ̄xe−2πxe−πx(y−y0)

2
, (B.57)

and

η2 ≈ 4πx3/2e−πρ̄xe−2πx

∫ ∞

0

dte−πxt2 = 2πxe−πρ̄xe−2πx.

(B.58)
The free energy from η2 gives a contribution at high x
(large separations or high temperatures):

F2 =
−(kT )2

l�c
e−ρ̄xe−2πx

=
−(kT )2

l�c
e−2ρ�c e2

mc2
le−4πkTl/(�c). (B.59)

The whole Casimir free energy in the high x = 2kT l/(�c)
limit is:

F (l, T ) =
kT

2π

∫ ∞

κ

dtt ln
(
1 − e−2lt

)

− (kT )2

l�c
e−2ρ�c e2

mc2
le−4πkTl/(�c) + O

(
e−x2

)
.

(B.60)

This is the correct limit for either high temperature at
fixed separation or for large distances at fixed temper-
ature. The given expression can also be valid at small
separations or low temperatures. This is a crucial point
but one should remember that the derivation of plasma
density from the equating of black body radiation to zero-
point energy and subsequent use of that density requires
“high” temperatures [28]. The situation for two nuclear
particles is one with very high effective temperature and
separations being “large”, at least compared to the screen-
ing length of the high density plasma.

Appendix C: ζ functions in physics

We would like to point out that that zeta functions
have been applied to many physical problems in the
past [38–42]. Elizalde considered for example the sum
S2(t), defined by:

S2(t) =
∞∑

n=1

e−n2t,

with t a parameter. This is transformed into the equation

S2(t) = −1
2

+
1
2

√
π

t
+

∞∑

k=1

(−t)k

k!
ζ(−2k) + Δ2(t),
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where Δ2(t) is a remainder. The zeta-function term
does not contribute, and the reminder reduces to the
sum/integral

Δ2(t) = 2
∞∑

n=1

∫ ∞

0

dxe−x2t cos(2πnx) =
√

π

t

∞∑

n=1

e−
π2n2

t .

It means that

S2(t) = −1
2

+
1
2

√
π

t
+

√
π

t

∞∑

n=1

e−
π2n2

t .

This formula was a key component in our derivations [35].
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