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D. Rönchen1,a, M. Döring2,3,b, F. Huang4,5, H. Haberzettl3, J. Haidenbauer1,6, C. Hanhart1,6, S. Krewald1,6,
U.-G. Meißner1,2,6, and K. Nakayama1,5
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Abstract. The reactions γp → π0p and γp → π+n are analyzed in a semi-phenomenological approach
up to E ∼ 2.3 GeV. Fits to differential cross section and single- and double-polarization observables are
performed. A good overall reproduction of the available photoproduction data is achieved. The Jülich2012
dynamical coupled-channel model —which describes elastic πN scattering and the world data base of the
reactions πN → ηN , KΛ, and KΣ at the same time— is employed as the hadronic interaction in the
final state. The framework guarantees analyticity and, thus, allows for a reliable extraction of resonance
parameters in terms of poles and residues. In particular, the photocouplings at the pole can be extracted
and are presented.

1 Introduction

Quantum Chromodynamics (QCD) manifests itself in a
rich spectrum of excited baryons in the region between
the perturbative regime and the ground-state hadrons.
Most of the available information on the resonance spec-
trum was obtained by partial-wave analyses of elastic πN
scattering [1–3]. However, it is important to include other
channels like ηN , KΛ or KΣ that couple to the πN sys-
tem into such analyses. It is expected that data obtained
for those other meson-baryon channels could help to shed
light on the so-called “missing resonances” predicted in
quark models and related approaches [4–12] or lattice cal-
culations [13] and assumed to couple only weakly to πN .

Since the amount of data on transition reactions like
πN → ηN , KΛ, KΣ, etc., is somewhat limited, one should
take advantage of the wealth and precision of the corre-
sponding photoproduction data supplied over the past few
years by experimental facilities like ELSA, GRAAL, JLab,
MAMI, and SPring-8. Clearly, also in the case of photo-
production so far, certain assumptions have to be made in
partial-wave analyses because the data are not yet accu-
rate enough to allow for a model-independent extraction
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of the amplitude. However, the latter will become pos-
sible once more precise and more complete experiments
become available [14–17]. It should be said that for pion
photoproduction, in principle, a complete set of observ-
ables {σ,Σ, T, P,E,G,Cx, Cz} —which would allow a full
determination of the reaction amplitude [18]— has be-
come available quite recently. However, the observables in
question have not yet been measured at the same ener-
gies —which would be required, at least formally, for a
complete experiment. Actually, due to the self-analyzing
nature of hyperons, the aim of providing a complete set of
experiments is easier to realize in kaon photoproduction
than in pion photoproduction. Finally, we want to men-
tion that a smaller number of polarization observables is
sufficient for an analysis within a truncated multipole ex-
pansion, see the arguments in refs. [19, 20].

To analyze pion- as well as photon-induced data theo-
retically, different approaches have been applied. The πN
threshold region is well understood in terms of chiral per-
turbation theory (ChPT) [21–35], while extensions in form
of unitarized chiral approaches [36–53] allow one to study
the resonance region but also to consider the coupling to
other channels like ηN , KΛ or KΣ.

K-matrix [54–65] or unitary isobar models [66,67] pro-
vide practical and flexible tools to analyze large amounts
of data. By omitting the real parts of the self-energies the
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complexity of the calculation is strongly reduced and only
on-shell intermediate states are included. While unitarity
is preserved, dispersive parts are often neglected; this in-
troduces systematic uncertainties into the extraction of
resonance positions and residues.

For the task of a simultaneous analysis of different re-
actions, dynamical coupled-channel (DCC) models [68–78]
are particularly well suited as they obey theoretical con-
straints of the S-matrix such as analyticity and unitarity.
This allows for a reliable extraction of resonance parame-
ters in terms of poles and residues in the complex energy
plane. A simultaneous description of the reactions πN →
πN , ηN and KY (KΛ,KΣ) has been accomplished within
the DCC framework of the Jülich2012 model [79]. See also
the supplementary material and tables of hadronic tran-
sitions among the channels πN , ηN , KΛ, and KΣ which
are available online [80]. In this approach [79, 81–85], the
inclusion of the dispersive contributions of intermediate
states and the correct structure of branch points [86] guar-
antee analyticity. The scattering amplitude is obtained as
solution of a Lippmann-Schwinger–type equation, formu-
lated in time-ordered perturbation theory (TOPT), which
automatically ensures two-body unitarity. The three-body
channel ππN is important because it is the source of large
inelasticities. Its effect is included in the model via effec-
tive πΔ, σN and ρN channels. In the Jülich2012 model,
the t-channel exchanges are complemented by u-channel
baryon exchanges to approximate the left-hand cut. To-
gether, they constitute the non-resonant part of the inter-
action, referred to as “background”. Bare resonances are
introduced as s-channel processes. The explicit treatment
of the background in terms of t- and u-channel diagrams
imposes strong correlations amongst the different partial
waves and generates a non-trivial energy and angular de-
pendence of the observables. Interestingly, the πN → KY
amplitudes found in ref. [79] are quite similar to those of a
later analysis performed by the Bonn-Gatchina group [87].

The adaptation of DCC models to finite volumes, to
allow for the prediction of lattice levels and the calculation
of finite volume corrections, was pioneered in ref. [88]. In
principle, such extensions of hadronic approaches allow for
the analysis of experimental and “data” from lattice QCD
simulations [13,89–91] on the same footing [92–95]. Chiral
extrapolations are non-trivial due to the intricate coupled-
channel structure in meson-baryon scattering [96].

Recently, it was shown how the Jülich coupled-chan-
nels approach can be extended to pion photoproduc-
tion [97] within a gauge-invariant framework that respects
the generalized off-shell Ward-Takahashi identity [98–100].
Such a field-theoretical description of the photoproduction
process is, however, technically rather involved. Therefore,
in the present work we follow a more phenomenological ap-
proach in which we use a flexible and easy-to-implement
parametrization of the photo-excitation vertices at the
multipole-amplitude level. This approach is inspired by
the GWU/DAC CM12 parameterization of ref. [3], that
complements earlier parameterizations [16, 101–104]. In
this way, we will be able to consider a far larger and more
comprehensive set of pion photoproduction data than be-
fore [97], although at the expensive of giving up any direct

connection with the microscopic reaction dynamics of the
photo-interaction. For the hadronic interaction part, all
microscopic features from our full DCC approach [79] are
preserved (i.e. the elastic πN and πN → ηN , KY data
are described). We view this semi-phenomenological ap-
proach as an intermediate step towards building a more
microscopic DCC description not only of photoproduc-
tion, but also of electroproduction processes along the
lines of ref. [97].

The paper is organized as follows: in sect. 2, we give
an overview of the formalism of the hadronic coupled-
channel model and the phenomenological parameteriza-
tion of the photo-excitation vertices. The data base and
the fitting strategy are described in sect. 3.1. In sect. 3.2,
the fit results are compared to data and discussed in detail.
The extracted photocouplings at the pole can be found in
sect. 3.4. In the appendices, details of the multipole de-
composition of the photoproduction amplitude and the
definition of the observables and the photocouplings are
given.

2 Formalism

2.1 Two-potential formalism for the hadronic
interaction

Both the hadronic scattering matrix and the photopro-
duction amplitude can be decomposed into a pole and a
non-pole part as outlined in this and the following sec-
tion. This decomposition is not required by the photo-
production formalism because the photoproduction am-
plitude can be formulated in terms of the full half-offshell
T -matrix as shown in the next section. However, the de-
composition in pole and non-pole parts simplifies numerics
significantly as outlined in sect. 3.1.

The partial-wave T -matrix in the Jülich2012 formula-
tion [79] is given by the integral equation,

Tμν(q, p′, E) = Vμν(q, p′, E)

+
∑

κ

∫ ∞

0

dp p2 Vμκ(q, p, E)Gκ(p,E)Tκν(p, p′, E), (1)

where q ≡ |	q | (p′ ≡ |	p ′|) is the modulus of the outgoing
(incoming) three-momentum that may be on- or off-shell,
E is the scattering energy, and μ, ν, κ are channel indices.
In eq. (1), the propagator Gκ has the form

Gκ(p,E) =
1

E − Ea(p) − Eb(p) + iε
, (2)

where Ea =
√

m2
a + p2 and Eb =

√
m2

b + p2 are the on-
mass-shell energies of the intermediate particles a and b
in channel κ with respective masses ma and mb. Equa-
tion (1) is formulated in the partial-wave basis, i.e. the
amplitude only depends on the modulus of the incom-
ing, outgoing, and intermediate particle momenta. This
implies a partial-wave decomposition of the exchange po-
tentials [84, 85]. The denominator in eq. (1) corresponds
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to the channels with stable particles, πN , ηN , KΛ, and
KΣ; for the effective ππN channels (πΔ, σN, ρN), the
propagator is more involved [83,85].

The sum of the u- and t-channel diagrams is labeled as
V NP in the following. The full set is shown in figs. 1 and 2
of ref. [79]. Together with the (bare) s-channel exchanges
V P, they constitute the interaction V in eq. (1),

Vμν = V NP
μν + V P

μν ≡ V NP
μν +

n∑

i=0

γa
μ;i γc

ν;i

E − mb
i

, (3)

with n being the number of bare s-channel states in a
given partial wave. The γc

μ;i (γa
ν;i) are the bare creation

(annihilation) vertices of resonance i with bare mass mb
i .

The notation is chosen to be consistent with earlier work;
confusions with the photon (γ) should be excluded by the
context. The explicit form of the resonance vertex func-
tions can be found in appendix B of ref. [81] and in ap-
pendix A of ref. [79]. In the following we make use of the
two-potential formalism and apply it to the decomposi-
tion defined in eq. (3). Inserting V NP into a Lippmann-
Schwinger–type equation,

TNP
μν = V NP

μν +
∑

κ

V NP
μκ GκTNP

κν , (4)

leads to the so-called non-pole part of the full T -matrix
(projected to a partial wave). For simplicity, in eq. (4) and
the following, the integration over the momentum of the
intermediate state p, cf. eq. (1), is not written explicitly.
The s-channel exchanges that constitute V P generate the
pole part of the T -matrix, TP. The latter involves the
non-pole part TNP given in eq. (4) and can be expressed
in terms of the quantities

Γ c
μ;i = γc

μ;i +
∑

ν

γc
ν;i Gν TNP

νμ ,

Γ a
μ;i = γa

μ;i +
∑

ν

TNP
μν Gν γa

ν;i,

Σij =
∑

μ

γc
μ;i Gμ Γ a

j;μ , (5)

where Γ c (Γ a) are the so-called dressed resonance cre-
ation (annihilation) vertices and Σ is the self-energy. The
indices i, j label the s-channel state in the case of multiple
resonances. The order of terms in eq. (5) and all following
equations corresponds to the convention that time flows
from the right to the left. For the case of two resonances
in a partial wave, the pole part reads explicitly [105]

TP
μν = Γ a

μ D−1 Γ c
ν ,

where

Γ a
μ = (Γ a

μ;1, Γ
a
μ;2), Γ c

μ =

(
Γ c

μ;1

Γ c
μ;2

)
,

D =

(
E − mb

1 − Σ11 −Σ12

−Σ21 E − mb
2 − Σ22

)
, (6)

from which the single-resonance case follows immediately.
It is easy to show that the full scattering T -matrix of
eq. (1) is given by the sum of pole and non-pole parts,

Tμν = TP
μν + TNP

μν . (7)

2.2 Two-potential formalism for photoproduction

The photoproduction multipole amplitude in terms of a
photoproduction kernel Vμγ is given by

Mμγ(q, E) = Vμγ(q, E) +
∑

κ

∫ ∞

0

dp p2 Tμκ(q, p, E)

× Gκ(p,E)Vκγ(p,E). (8)

Here and in the following the index γ is used exclusively
for the γN channel. Note that in the second term the
photoproduction kernel produces a meson-baryon pair in
channel κ with off-shell momentum p that rescatters via
the hadronic half-offshell T -matrix, producing the final
πN state (more generally, channel μ) with momentum q.
The formalism allows for off-shell external q but we will
consider only the production of real pions in the follow-
ing. Similarly, Vμγ can also depend on the virtuality of
the photon, but we will consider only real photons with
Q2 = 0. With the choice of Vμγ as specified below, the
photoproduction amplitude of eq. (8) satisfies Watson’s
theorem by construction.

The photoproduction kernel can be written as

Vμγ(p,E) = αNP
μγ (p,E) +

∑

i

γa
μ;i(p) γc

γ;i(E)
E − mb

i

. (9)

Here, αNP
μγ represents the photon coupling to t- and u-

channel diagrams and to contact diagrams. These dia-
grams together form the non-pole part of the full pho-
toproduction kernel as can bee seen from field-theoretical
considerations [100]. The summation in eq. (9) is over the
resonances i in a multipole, and the γc

γ;i are the real tree-
level γNN∗

i and γNΔ∗
i photon couplings that only depend

on the energy E but not on the momentum p. It is crucial
that the resonance annihilation vertex γa in eq. (9) is pre-
cisely the same as in the hadronic part of eq. (3) so that
the explicit singularity at E = mb

i cancels.
The two-potential formalism allows one to rewrite the

photoproduction amplitude M as

Mμγ = αNP
μγ +

∑

κ

TNP
μκ GκαNP

κγ + Γ a
μ;i (D−1)ij Γ c

γ;j ,

Γ c
γ;j = γc

γ;j +
∑

κ

Γ c
κ;jGκαNP

κγ , (10)

with the dressed resonance-creation photon-vertex Γ c
γ;j

which is a vector in resonance space, like the strong
dressed vertex Γ c

μ;i in eq. (6). This standard result has
been derived, e.g., in ref. [105]. In the form of eq. (10) it
becomes apparent that in Mμγ all singularities due to the
bare resonances of eq. (9) have canceled.
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Alternatively, one can write the amplitude simply in
terms of the full hadronic T -matrix as

Mμγ =
∑

κ

(1 − V G)−1
μκ Vκγ . (11)

In principle, any of the forms (8), (10), or (11) can be used
in practical calculations. In the form of eq. (11), which re-
sembles the one of ref. [106], the similarity with the CM12
Chew-Mandelstam parameterization of the CNS/DAC
group [3] becomes apparent, in which the hadronic ker-
nel K̄κν of the hadronic T -matrix,

Tμν =
∑

κ

(1 − K̄C)−1
μκ K̄κν , (12)

is replaced by a photoproduction kernel, K̄κγ ,

Mμγ =
∑

κ

(1 − K̄C)−1
μκ K̄κγ . (13)

Here, C is the complex Chew-Mandelstam function that
guarantees unitarity. While eq. (13) is formally identical to
eq. (11), there is a practical difference: Equation (11) im-
plies an integration over intermediate off-shell momenta,
while the quantities K̄ and C in eq. (13) factorize. In both
approaches the dispersive parts of the intermediate loops
G and C are maintained.

In the present approach, the terms αNP
μγ and γc

γ;i in
eq. (9) are approximated by polynomials P ,

αNP
μγ (p,E) =

γ̃a
μ(p)

√
mN

PNP
μ (E)

γc
γ;i(E) =

√
mNPP

i (E), (14)

where γ̃a
μ is a vertex function equal to γa

μ;i but stripped of
any dependence on the resonance number i. Equation (14)
means that we have n+m polynomials per multipole with
n resonances i and m hadronic channels μ. With this
parameterization, non-analyticities from left-hand cuts,
like the one from the pion-pole term, are approximated
by polynomials. As the distance to the physical region
is quite large, such an approximation can be justified.
Note in this context that even for the γγ → ππ reaction
that has a very close-by left-hand cut, the Born contribu-
tions can be effectively parameterized by a linear polyno-
mial [107].

The photoproduction kernel Vμγ should have the cor-
rect threshold structure, Vμγ ∼ qL where q is the center-of-
mass momentum in channel μ and L is the orbital angular
momentum. The L dependence of the different channels
with a given JP can be found, e.g., in table XI of ref. [79].
The correct L dependence is automatically provided by
the bare resonance vertices γa

μ;i and, thus, already ful-
filled for the pole part of eq. (14). The same applies to the
vertex function γ̃a

μ in the non-pole part of eq. (14).

The final choice for the polynomials P , for a given
multipole, is then

PP
i (E) =

�i∑

j=1

gP
i,j

(
E − Es

mN

)j

e−λP
i (E−Es)

PNP
μ (E) =

�μ∑

j=0

gNP
μ,j

(
E − Es

mN

)j

e−λNP
μ (E−Es), (15)

with Es being a suitable expansion point close to the πN
threshold, Es = 1077MeV. The appearance of the nu-
cleon mass mN in eqs. (14) and (15) ensures that the
g’s are dimensionless quantities. The g and the λ > 0
are multipole-dependent free parameters that are fitted to
data. Furthermore, to fulfill the decoupling theorem, that
resonance contributions are parametrically suppressed at
threshold, the sum for PP starts with j = 1 and not with
j = 0 (hence, the expansion is chosen at threshold). In
the fitting procedure, �i and �μ are chosen as demanded
by data but always �i, �μ ≤ 3. The factor e−λ (E−Es) en-
sures that the multipole amplitudes are well behaved in
the high-energy limit, and, at the same time, absorbs the
potentially strong energy dependence induced by the γN
threshold that is close to the πN threshold. In any case,
it is clear that this effective parameterization cannot be
used for sub-threshold extrapolations.

In a covariant microscopic formulation of the reaction
dynamics of photoprocesses, as for example in ref. [97],
local gauge invariance in the form of generalized Ward-
Takahashi identities [98–100] provides an important and
indispensable off-shell constraint that governs the correct
microscopic interplay of longitudinal and transverse con-
tributions of the electromagnetic currents. The present
study, by contrast, concerns only a phenomenological
three-dimensional parametrization of the underlying reac-
tion dynamics where the real (and thus transverse) pho-
tons never “see” the longitudinal parts of the electromag-
netic currents important for local gauge invariance. The
physical (on-shell) amplitudes obtained here thus triv-
ially correspond to globally conserved currents because
the parametrization is chosen from the very beginning to
only model the transverse contributions of the current.
Global gauge invariance (which is the only measurable
constraint), therefore, is never an issue for the present
study. The situation is more complicated if one considers
virtual photons, however, we will not enter this discussion
here.

In the present approach, the photon is allowed to cou-
ple to the πN , ηN and πΔ channels. The latter accounts
for the inelasticity into the ππN channels. As long as the
analysis is restricted to one-pion photoproduction, as in
this study, there is no need to include additional couplings
of the photon to σN and ρN . As for the πΔ channels, there
are usually two independent couplings for a given multi-
pole; we only couple the photon to the πΔ channel with
the lower L (c.f. also table XI of ref. [79]). The extension
to ηN , KΛ and KΣ photoproduction is planned for the
future and will require direct photon couplings to these
states. As for photoproduction on the neutron, the JLab
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Fig. 1. Schematic representation of the reactions γp → π0p (upper row) and γp → π+n (lower row), cf. eqs. (16) and (17).
The small black dots represent the potentials V 1

2 (πN γp) and V 3
2 (πN γp), while T is the hadronic T -matrix. Not shown are the

excitations of intermediate πΔ and ηN channels that are treated isospin-symmetrically.

FROST and HD-ICE experiments are currently being an-
alyzed [108,109] and theoretical methods are being devel-
oped to disentangle the neutron amplitudes [101,110,111]

For completeness, a multipole decomposition of the
pseudoscalar meson photoproduction amplitude is given
in appendix A.

2.3 Isospin breaking

In the Jülich model, in general, isospin-averaged masses
are used, which has little effect at energies that are not
very close to the threshold, as it is the case for the hadronic
data used in the analysis of ref. [79]. For pion photopro-
duction, however, there are data at very low energies and
we have to take into account the different threshold ener-
gies for the π0p and the π+n channels.

In the particle basis, the amplitudes for the processes
γp → π0p and γp → π+n are shown in fig. 1 and read

Mπ0p γp = Vπ0p γp + Tπ0p π0p Gπ0p Vπ0p γp

+Tπ0p π+n Gπ+n Vπ+n γp

+
∑

κ�=πN

(
T 1

2 (πN κ) Gκ V 1
2 κ γp

+
2
3

T 3
2 (πN κ) Gκ V 3

2 κ γp

)
, (16)

Mπ+n γp = Vπ+n γp + Tπ+n π0p Gπ0p Vπ0p γp

+Tπ+n π+n Gπ+n Vπ+n γp

+
∑

κ�=πN

(√
2 T 1

2 (πN κ) Gκ V 1
2 κ γp

−
√

2
3

T 3
2 (πN κ) Gκ V 3

2 κ γp

)
, (17)

where κ �= πN stands for the sum over the intermedi-
ate states πΔ and ηN that are assumed to fulfill isospin
symmetry as indicated with isospin indices I = 1

2 , 3
2 . Fur-

thermore, note that Tπ0p π0p is a pure isoscalar transition
and, thus, very small near threshold [28–30, 112–115]. As
a consequence, E+

0 (π0p) develops only a very small imag-
inary part below the π+n threshold.

For the hadronic final-state interaction Tμν , and for
Vμγ in eqs. (16) and (17) we neglect the small mass differ-

ences within the isospin multiplets, i.e.

Vπ0p γp = V 1
2 (πN γp) +

2
3
V 3

2 (πN γp),

Vπ+n γp =
√

2V 1
2 (πN γp) −

√
2

3
V 3

2 (πN γp),

Tπ0p π0p =
1
3
T 1

2 (πN πN) +
2
3
T 3

2 (πN πN),

Tπ0p π+n =
√

2
3

T 1
2 (πN πN) −

√
2

3
T 3

2 (πN πN),

Tπ+n π+n =
2
3
T 1

2 (πN πN) +
1
3
T 3

2 (πN πN) . (18)

The π0p and π+n propagators Gπ0p, Gπ+n have the same
form as the isospin-symmetric πN propagator but incor-
porate the exact proton (neutron) and π0 (π+) masses,

Gπ0p =
1

E −
√

m2
p + p2 −

√
M2

π0 + p2 + iε
, (19)

Gπ+n =
1

E −
√

m2
n + p2 −

√
M2

π+ + p2 + iε
. (20)

Accordingly, to calculate the differential cross section
close to threshold in eq. (B.13) instead of the averaged mN

we use mp and mn for calculating |	q |. The same applies
to mN appearing in eq. (A.6).

3 Results

Before we start discussing the present results, a remark on
the observables discussed in this work is in order. There
are many different conventions used in the literature to
define the spin polarization observables. Our convention is
given explicitly in appendix B and agrees with that used
by the SAID group [104].

3.1 Data base and fit parameters

The free parameters g and λ of eq. (15) are determined
by MINUIT fits on the JUROPA supercomputer at the
Forschungszentrum Jülich. In a first step, the parameters
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Table 1. Characteristics of fits 1 and 2. The difference be-
tween the fits shows the impact of recent high-precision mea-
surements of Σ, Δσ31, G and H from ELSA, JLab and MAMI.

Fit 1 Fit 2

Line style

# of data 21,627 23,518

Excluded data π0p: E > 2.33 GeV and

θ < 40◦ for E > 2.05 GeV

π+n: E > 2.26 GeV and

θ < 9◦ for E > 1.60 GeV

ds/dΩ, P, T included included

Σ included included

(CLAS [118] predicted)

Δσ31, G, H predicted included

E, F , Cx′L, Cz′L predicted predicted

Sys. Error 5% 5%

χ2 20,095 22,880

χ2/d.o.f. 0.95 0.99

are fitted to the multipole amplitudes of the GWU/SAID
CM12 solution [3] which guarantees a good starting point
for the second step that involves fitting only to the data.
The two reactions γp → π0p and γp → π+n are studied si-
multaneously. For the connection of the present formalism
to observables see appendix B. The hadronic T -matrix in
eq. (8) is taken from the Jülich2012 fit A [79]. This inter-
action describes elastic πN scattering and the world data
base of πN → ηN and KY . Simultaneous fits to pion- and
photon-induced reactions in the spirit of refs. [116,117] are
planned for the future.

In the fitting procedure we consider two scenarios.
In fit 1, only differential cross sections, beam and tar-
get asymmetries, and recoil polarizations are taken into
account. In a second fit (fit 2), also recent CLAS data
on the beam asymmetry [118] and data on the double-
polarization observables G, H and Δσ31 are included. We
expect that a comparison of the two fits allows one to see
the impact of the recent high-precision data from ELSA,
JLab, MAMI, and Spring-8 on the extracted resonance
parameters. An overview of the two fits performed in this
study can be found in table 1. The observables E, F , Cx′

L
,

and Cz′
L

are predicted.
The photoproduction data are taken from the GWU/

SAID data base [2, 3] where we consider data up to
E = 2330MeV for γp → π0p and up to E = 2260MeV for
γp → π+n. (The CNS/DAC group at GWU includes data
up to higher energies.) For the reaction with final state
π0p (π+n) and for energies E > 2050MeV (E > 1600),
we exclude data with forward angles θ < 40◦ (θ < 9◦)
because in the present approach we do not include partial
waves with total angular momentum J ≥ 11/2. A detailed
look at the two data sets in question is provided in fig. 2,
where results of our fit 2 are shown together with those of
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Fig. 2. High-energy behavior in the reaction γp → π0p (left)
and γp → π+n (right). Solid (red) line: fit 2; dash-dotted
(black) line: GWU/SAID CM12 [3]; dashed (green) line: Bonn-
Gatchina [119]. Data π0p: CR11 [120], BA05 [126], DU07 [127],
BU68 [128]. Data π+n: BO71 [129], EK72 [130], AL70 [131],
BU66 [132], BU67 [133], DU09 [134]. The regions excluded in
our fit are shown as shaded areas.

the GWU/SAID analysis [3] and the Bonn-Gatchina anal-
ysis [119]. As can be seen, for π0p none of the approaches is
able to describe the forward peak (an experimental confir-
mation of the data CR11 [120] is needed). In case of π+n,
on the other hand, the forward peak is well described by
the GWU/SAID analysis. Note that the GWU/SAID and
the Bonn-Gatchina analyses use prescriptions for partial
waves with J ≥ 11/2 in terms of Born amplitudes and
reggeized exchanges, respectively. We plan to improve the
matching to the high energy/low t region where Regge
trajectories provide an economic parameterization of the
amplitude [121–125].

No special weights are assigned to any data in both
fit 1 and 2. However, some data sets are contradictory to
each other as can be seen, e.g., in fig. 3 at the energies
1170MeV and 1268MeV. The deviations go beyond an
overall normalization, i.e. they concern also the angular
dependence. To account for such discrepancies we apply
an additional systematic error of 5% to all data. Of course,
this effectively gives more weight to data with larger er-
rors, such as polarization observables.

In any case, as next step, one would allow for a cer-
tain freedom in the normalization of individual data sets
as practiced by the CNS/DAC group [2, 3]. We plan to
improve our analysis along these lines in the future.

In total, we use 417 free parameters for fit 1 and 388 for
fit 2. The parameters are the photon couplings gP and λP

to 11 isospin I = 1/2 resonance states and 10 isospin I =
3/2 resonance states in addition to the non-pole photon
couplings gNP

μ and λNP
μ with μ = πN, ηN, πΔ for I = 1/2

and μ = πN, πΔ for I = 3/2, cf. eq. (15).
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It is obvious from eq. (6) that the pole-part can be
evaluated from the non-pole part, meaning that for every
fit step of parameters tied to the non-pole part, it is most
economic to perform a full fit of the parameters tied to
the pole part. This was the strategy followed in ref. [79].
Similarly, the photoproduction amplitude M in eq. (8) is
evaluated from the hadronic T -matrix, that is not altered
in the study, and the calculation can be optimized. This
is the motivation to perform the decompositions outlined
in sect. 2. The photo-excitation of both bare resonances
and background is possible as can be seen in eq. (9). We
find that for some less prominent resonances it is possible
to set the bare resonance excitation γc

γ = 0. However,
for the more prominent ones, we need γc

γ �= 0 for a good
description of the data. In any case, we do not attribute
any physical meaning to the individual components of the
decompositions into pole and non-pole part.

After convergence of fit 2, we have searched for local
minima of χ2 in the vicinity of the best parameter set
but have not found any. This search was performed by
introducing special weights for subsets of data, such that
parameters are forced to change. Introducing the original
universal weight of one for all data, the fit converged back
to the original solution. This procedure also allowed to
estimate errors in the photocouplings, as discussed at the
end of sect. 3.4.

3.2 Fit results

In figs. 3 to 21, we show selected results of the fits to
observables. The results compared to the full data base
will be made available online [80]. Data sets that differ
by less than 10MeV in scattering energy are depicted in
one graph if necessary. If more than one data set from
the same experiment lies in the same energy bin, we show
only the one closest to the quoted energy. Older data with
larger error bars are not displayed in many cases but enter
the fitting procedure.

The differential cross section for γp → π0p is shown in
figs. 3 and 4 from threshold up to 2350MeV. Due to the
inclusion of isospin breaking as explained in sect. (2.3), we
achieve a satisfactory description of the data even at ener-
gies close to threshold. At very high energies (E > 2GeV)
and backward angles, the agreement between data and fit
is good, while the fit does not reproduce the forward peak
at extreme angles (cf. fig. 2). As explained in the previ-
ous section, those data points were excluded from the fits
(shaded areas in the figures) because the current approach
is limited to partial waves with a total angular momen-
tum of J ≤ 9/2. Higher partial waves would be needed to
describe this aspect of the data distribution. The region of
forward angles at high energies is then also the only place
where differences between fit 1 and fit 2 show up.

By contrast, in case of the differential cross section
for γp → π+n, shown in figs. 5 and 6, small differences
between fit 1 and fit 2 are visible at very low energies E ≤
1130MeV. Small deviations from data, as can be seen,
e.g., at E = 1131 or 1240MeV, are due to inconsistencies
among the different data sets.

The beam asymmetry Σ is presented in fig. 7 for the
reaction γp → π0p and in fig. 9 for the π+n final state. In
figs. 8 and 10 results for the new CLAS data [118] on Σ
can be found. These data were not included in fit 1 but
only in fit 2. At higher energies E ≥ 1970MeV (fig. 8), fit 2
is clearly better than the prediction of fit 1. The medium-
energy regime is predicted/described equally well in both
fits. For γp → π+n (fig. 10), on the other hand, the in-
fluence of the new CLAS data is visible at medium ener-
gies E ∼ 1700MeV. Here, the description of the forward
and backward angles in fit 2 is improved compared to the
prediction of fit 1. The same applies to higher energies.
Overall, the new CLAS data have a major impact.

The results of the fits to the target asymmetry T can
be found in figs. 11 and 12. Compared to differential cross
sections and beam asymmetries, much less data is avail-
able for this observable. Although this reduces the influ-
ence in the χ2 minimization, the agreement of fit and data
distribution is good, especially at high energies. Differ-
ences between fits 1 and 2 show up predominantly at high
energies and in γp → π+n.

For the recoil polarization P (see figs. 13 and 14), the
data situation is similar to the one of the target asymme-
try. For the reaction γp → π0p, contradicting data sets
complicate the task of describing this observable as visi-
ble, e.g., at E = 1602MeV in fig. 13. In regions, where the
data is without ambiguity, we achieve a nice description
in both fits. At backward angles and higher energies, fit
1 and 2 differ from each other, in π+n more than in π0p.
Additional data could resolve the ambiguity.

In figs. 15 to 17, we display the results for the double-
polarization observable G. This observable was excluded
from fit 1. As figs. 15 and 17 show, differences between
fit 1 and 2 become larger at higher energies and back-
ward angles, where no data are available. The recent
high-precision measurement from CB/ELSA-TAPS [222]
is presented in fig. 16. At medium energies, the new CB-
ELSA/TAPS data cover almost the whole angular range
and the inclusion of G data in fit 2 has a noticeable impact.
In case of γp → π+n, distinguishable differences between
the predictions of fit 1 and the results of fit 2 are confined
to angles 60◦ < θ < 90◦. Note that, compared to dσ/dΩ or
Σ, the number of data points available for this observable
is very small for both reactions. It is, thus, not possible to
improve the fit if one wants to maintain the same weight
for all data points (see, e.g. the set at E = 1910MeV in
fig. 17).

Similar considerations apply to the data on the double
polarization H in figs. 18 and 19, that is only included
in fit 2. In any case, the agreement between fit and data
is acceptable. Again, fit 1 and 2 differ most evidently at
backward angles and high energies in π0p.

The inclusion of the data for the helicity cross-section
difference Δσ31 which is related to the helicity asymmetry
E (cf. eq. (B.23)) for γp → π0p (fig. 20) in fit 2, results in a
major improvement at energies E > 1415 MeV compared
to the prediction of fit 1. This is not the case for γp → π+n
as can be seen in fig. 21. Here, the prediction of fit 1 is
good and fit 2 shows only minor improvements.
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In figs. 22 and 23, we present predictions for the
double-polarization observables E and F . At low energies,
the results from fit 1 and 2 are quite similar. With increas-
ing energy, the deviation between the two fits becomes
larger, which is an indication for the sensitivity of these
observables to small variations of the amplitude. Very re-
cently, data on the double-polarization observable E for
γp → π0p became available from the CBELSA/TAPS Col-
laboration [230]. Those data, which were neither included
in fit 1 nor in fit 2, are shown in fig. 24 together with our
predictions. As said above E is related to Δσ31, and low-
energy data on the latter observable are included in fit 2.
This explains why the results for that fit are somewhat
better than those for fit 1, at least at lower energies. The
evident discrepancies at high energies suggest that the in-
clusion of the CBELSA/TAPS data [230] in a future fit
will certainly yield a modification of the amplitudes and,
therefore, have an impact on the resulting resonance pa-
rameters. Results for this observable from measurements
at JLab are expected soon, as well. In fig. 25 the total cross
section from ref. [231] and the angle-integrated helicity
cross-section difference, Δσ = σ3/2 − σ1/2, from ref. [230]
are shown. As expected from the good description of the
unpolarized differential cross section by both fits 1 and 2,
the total cross section σ and our results are in excellent
agreement. In contrast, the predictions for Δσ deviate at
lower energies and reflect the differences in the predic-

tions for E. Here, fit 2 gives a much better result, while
at higher energies, fit 1 is slightly better. The peak at
E ∼ 1700 MeV is well described by both fits. The broad
structure at E ∼ 1900MeV, however, is underestimated
by both fits.

Predictions of the beam-recoil polarizations Cx′
L

and
Cz′

L
can be found in figs. 26 and 27 along with recent data

from MAMI [232] and JLab [218], and an earlier measure-
ment, also from JLab [217]. Calculations of these observ-
ables have been made, e.g., within a quark model [233]
or perturbative QCD [234]. Fit 1 and 2 give similar re-
sults for Cx′

L
, which are also, overall, in fair agreement

with the data. For certain details in the data distribution
improvements could be achieved by including the data in
the fit. The predictions are averaged over the indicated
angular bin for the MAMI measurement. For the JLab
measurement, however, the observable has been evalu-
ated at the exact angle without averaging, displayed in
the plots with thin (red) lines. We observe a strong angu-
lar dependence for angles θ > 110◦ and at high energies.
With regard to Cz′

L
, fit 1 and 2 show larger deviations

than for Cx′
L
, especially at higher energies. In this case

fit 1 seems to be slightly better. Here, the results were not
angle-averaged. The rather large difference in the results
of fit 2 at θ = 135◦ and at θ = 143◦ (cf. the solid and the
dash-dotted lines in fig. 27) illustrates that Cz′

L
exhibits

a strong angular dependence, as well.
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In general, we observe that fit 1 quite well predicts
the data, in particular the new CLAS data on Σ and the
double-polarization observables G, H, and Δσ31. Still, at
the quantitative level, those data have an impact on the
resonance properties, once they are included in our fit,
as discussed in sect. 3.4. Similar effects can be expected
from the inclusion of double polarizations, like E, or the
polarization transfer Cx′

L
and Cz′

L
in future analyses. Al-

though our predictions of those observables do not deviate
strongly from data in most cases, a fit to those data will
lead to a more precise determination of the resonance pa-
rameters.

3.3 Multipoles

In figs. 28 and 29, we show our results for the isospin
I = 1/2 and 3/2 multipoles together with those of the
GWU/SAID CM12 analysis [3]. Single-energy solutions of
the latter are available for the lower partial waves. For
lower multipoles our solution is similar to the CM12 solu-
tion. The most striking example is the dominant M1+(3/2)
multipole. In the electric P33 multipole E1+(3/2), how-
ever, we observe a structure around 1.65GeV in both fits
that does not show up in the SAID analysis. This structure
has its origin in the Δ(1600) 3/2+, a resonance which is
dynamically generated in the Jülich2012 coupled-channels
model [79]. Since this resonance couples predominantly to

the πΔ channel, no effect of it was seen in the elastic πN
P33 partial wave, as discussed in the analysis of ref. [79]
where only hadronic channels were considered. However,
the γN → πΔ transition is large, making the resonance
structure visible in photoproduction. Preliminary results
of a new parameterization of the MAID approach suggest
a similar structure [235]. In case of the electric and mag-
netic D15 multipoles E2+(1/2) and M2+(1/2) the solu-
tions of fit 1 and 2 deviate at E ∼1.3GeV in the real part
of the amplitude. At such —comparably low— energies a
full dynamical coupled-channels analysis would probably
give a result, that is more constrained due to the explicit
inclusion of Born terms that can account for a large part
of the low-energy dynamics [97]. Further deviations from
the SAID solution can be found, e.g., in M1+(1/2) or in
E2+(3/2) and M2+(3/2). Here, fit 1 and 2 also give dif-
ferent results. Note that the relatively sharp spike in the
real part of the M1+(1/2) multipole is an artifact of the
isospin-symmetric representation of the multipoles in the
plot. The physical P -waves are all smooth and well be-
haved close to the thresholds, as fig. 31 demonstrates.

The higher multipoles starting with E3+ are less well
determined. With the exception of M3+(3/2), larger devi-
ations between our fits on the one hand and between our
fits and the SAID solution on the other hand can be ob-
served, as well as a strong energy dependence. The scale,
especially for the imaginary parts, is much smaller than
the scale of the lower multipoles, though.
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The threshold region of the E0+(π0p) multipole in
the particle basis is presented in fig. 30. Note that we
only adjust to experimental observables and not to any
of the extracted points from analyses shown in the fig-
ure (the same applies to fig. 31). Due to its smallness,
the E0+(π0p) multipole enables very sensitive tests of
the photoproduction amplitude and has been addressed
in several experimental and theoretical analyses. Pre-
cise experimental data are available from MAMI [138],
for earlier measurements see refs. [135, 139]. Within the
framework of chiral perturbation theory, E0+(π0p) close
to threshold has been calculated in the fundamental
works of refs. [21–27, 236]. More recent ChPT calcu-
lations can be found in refs. [32–34]. The role of D-
waves has been discussed in refs. [35, 53]. ChPT calcu-
lations including isospin breaking have been performed
in refs. [28–30] and relativistic chiral perturbation the-
ory has been applied in ref. [32]. The new ChiralMAID
approach [33] includes also electroproduction of charged
pions. ChPT in two-pion photoproduction has been pio-
neered in refs. [24, 26] and nowadays ChPT calculations
for photoproduction even on the tri-nucleon system have
become possible [237].

Predictions of E0+ from a dispersion-relation calcula-
tion can be found in ref. [238] and in ref. [239] the thresh-
old region has been described within a dynamical model
for π0 photo- and electroproduction.

As visible in fig. 30, the opening of the π+n channel
produces a kink in the π0p multipole amplitude. For the
real part of E0+, we note strong correlations between the
value at the π+n threshold and the slope: A small value in
combination with a small slope (fit 1) leads to a very simi-
lar χ2 as a rather large negative value and slope (fit 2), ad-
justing the higher multipoles at the same time, of course.

The imaginary part of E0+ in fit 2 is in good agree-
ment with the high-precision determination of refs. [28,30]
although it has to be stressed that in the latter works
isospin breaking effects beyond those considered here are
included. The small imaginary part below the π+n thresh-
old originates from a non-vanishing π0p → π0p transition,
cf. fig. 1. In this context let us mention that the isoscalar
scattering length of the Jülich2012 model [79] which en-
ters into this calculation is with a+

0+ = −16.6 · 10−3 M−1
π+

very small, but it is still twice as large as the recent high-
precision ChPT result [29] of a+

0+ = (7.6±3.1) ·10−3 M−1
π+ .
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In fig. 31, the P -wave combinations P1 to P3 are shown,
divided by the π0 c.m. momentum q. The Pi are defined as

P1 = 3E1+ + M1+ − M1−

P2 = 3E1+ − M1+ + M1−

P3 = 2M1+ + M1−. (21)

The data points represent a single-energy analysis of the
recent MAMI measurement performed in ref. [138]. Part
of the discrepancy between that analysis and our fits
certainly comes from employing a different data base. For
our analysis, in addition to the data of ref. [138], we also
use all data shown in figs. 3 and 7.

Predictions of the P -wave slopes from low-energy the-
orems have been pioneered in ref. [25] up to O(q3) and in
ref. [240] up to O(q4). The O(q3) threshold prediction of
ref. [240] is shown in fig. 31. For P1, the prediction is in
agreement with our fits. The deviation in P2 is presum-
ably due to too small errors of the experimental analysis.
In principle one could fit the differences as LECs appear
in P1 and P2 in the fourth order. For the reason just men-
tioned we refrain from fitting these LECs here.

One can use the value of P3 from our fit 2, extrapo-
lated to threshold (P3/q = 11.8 · 10−3/M2

π), to determine
the counterterm bP [240]. We obtain bP = 14.5GeV−3 to
order O(q3) and bP = 18.0GeV−3 to order O(q4). The
latter value should be compared to the ones of the O(q4)
fits of ref. [240] to older data: bP = 14.9GeV−3 (Schmidt
et al. [135]) and bP = 13.0GeV−3 (Fuchs et al. [136]).
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3.4 Photocouplings

The photocouplings Ãh
pole (cf. the definition in ap-

pendix C) are complex quantities that specify the γN cou-
pling to a resonance. They are well defined because they
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Fig. 25. Total cross section σ and the cross-section differ-
ence Δσ = σ3/2 − σ1/2 of the reaction γp → π0p. Dashed and
dash-dot-dotted (blue) line: prediction based on fit 1; solid and
dash-dotted (red) line: prediction based on fit 2; data: σ [231],
Δσ [230] (ELSA).

can be expressed in terms of pole positions and residues of
pion photoproduction multipoles and elastic πN scatter-
ing amplitudes. The Ãh

pole play the same role as the com-
plex hadronic couplings g at the pole discussed in ref. [79].
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L

of the reaction γp → π0p.
Note that this observable is defined with respect to the lab
frame but shown for different values of the c.m. scattering an-
gle θ. Dashed (blue) lines: prediction based on fit 1; solid thick
(red) lines: prediction based on fit 2. For both fits, the pre-
dictions are angle-averaged as indicated, corresponding to the
MAMI angular bins (black squares, SI13 [232]). The thin red
lines show the predictions of fit 2 for the JLab 2002 measure-
ments (blue circles, WI02 [217]). The magenta line shows the
prediction of fit 2 at θ = 143◦ of the JLab 2012 data point (ma-
genta star, LU12 [218]). Note that the JLab data WI02 [217]
are shown here with a reversed sign due to different conven-
tions (cf. appendix B). Systematic errors of the MAMI data
SI13 [232] are separately shown as brown bars.

In particular, residues of multipole amplitude Mμγ have
the same factorizing property as the residues of a multi-
channel scattering amplitude and can be expressed as the
product of the photocoupling gγN and the resonance cou-
pling to the final state πN , i.e. Res MπN γN = gπN gγN .
This means that the photocoupling at the pole is entirely
independent of the final state of the studied photoproduc-
tion reaction.

Photocouplings at the pole are also the quantities to
which, e.g., chiral unitary approaches to radiative baryon
decays can compare [43,241–244].

In contrast, the real-valued helicity amplitudes Ah tra-
ditionally quoted [245] depend on the parameterization of
the amplitude used in a particular approach. As shown
in ref. [246], Ãh

pole becomes real only in case of a pure
Breit-Wigner amplitude in the absence of background. In
that case, Ãh

pole = Ah [246]. As a side remark, some-
times helicity amplitudes calculated in quark models, real
by construction, are compared to the Ah quoted by the
PDG [245]; in view of the unclear physical meaning of the
Ah one should be very cautious when doing that kind of
comparison.

In this context, note also that the bare, real couplings
γc

γ in our parameterization of eq. (9) do not have any phys-
ical meaning; in particular, they cannot have the meaning
of helicity amplitudes of bare resonance states as some-
times claimed in quark model calculations. The bare pa-
rameters γc

γ suffer from the same dependencies on the
renormalization scheme and channel space as the bare
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Fig. 27. Polarization transfer Cz′
L

of the reaction γp → π0p.
Note that this observable is defined with respect to the lab
frame but shown for different values of the c.m. scattering angle
θ. Dashed (blue) lines: prediction based on fit 1; solid (red)
lines: prediction based on fit 2. Both curves show the prediction
for the JLab 2002 data (blue circles, WI02 [217]). The magenta
line shows the prediction of fit 2 at θ = 143◦ of the JLab 2012
data point (magenta star, LU12 [218]).

hadronic couplings γμ;i. See sects. 4.5 and 4.6 of ref. [79]
for a comprehensive discussion of this issue.

In tables 2 and 3, we list the results for the photocou-
plings at the pole (Ah

pole ∈ R),

Ãh
pole = Ah

pole eiϑh

, (22)

of the isospin 1/2 and 3/2 resonances calculated in this
study together with the pole positions extracted in the
Jülich2012 analysis [79]. The analytic continuation is per-
formed with the methods derived in ref. [83]. Addition-
ally, we compare our results to the ones of the Bonn-
Gatchina group [55], the recent ANL-Osaka analysis [68]
and parameters extracted [246] from an older version of
the GWU/SAID multipole analysis [247, 248]. Our con-
ventions for the photocouplings are identical to those of
ref. [246] and can be found in appendix C.

In tables 2 and 3, the photocouplings are quoted for
both fit 1 and fit 2. For prominent resonances such as
the N(1535)1/2−, the moduli of the photocoupling are
similar in both fits, in contrast to some of the angles, that
can differ by more than 20◦. Angles are in general less
well determined than the magnitude of photocouplings.
For less prominent resonances, like the N(1710)1/2+ or
Δ(1930)5/2+, the modulus can change by up to a factor of
two. This demonstrates that the recent data from ELSA,
JLab, MAMI, Spring-8, and GRAAL, included in fit 2
but not in fit 1, have a major impact on the quantitative
determination of resonance properties.

We find small to moderate angles ϑh for several res-
onances, among them the Δ(1232)3/2−, N(1650)1/2−,
N(1440)1/2+, N(1520)3/2−, in fair agreement with
ref. [246]. This has led to speculations [246] that the dif-
ference between the (real) Ah quoted in the Particle Data
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Book [245] and the photocouplings at the pole is possibly
not large. However, an inspection of tables 2 and 3 reveals
that the complex phases are, in general, not really small.

As can be seen in table 2, the real part of the pole
position of the N(1535)1/2− resonance is similar in all
quoted analyses, while the imaginary part in the present
approach is rather small. Our N(1650)1/2−, on the other
hand, is wider compared to other analyses. This illus-
trates the difficulties to extract pole positions in the
S11 partial wave [83]. As a result of the small width
of the N(1535)1/2− we also obtain a smaller photocou-
pling A

1/2
pole. The same correlation can be observed for the

Δ(1620)1/2− in table 3. Likewise, for the Δ(1232)3/2+,
the slightly different pole position in our analysis leads
to photocouplings A

1/2
pole and A

3/2
pole slightly different from

the ones in the other analyses. In case of the Roper reso-
nance N(1440)1/2+ our result is in good agreement with
the SAID analysis.

The photocoupling of the N(1535)1/2− and its Q2

dependence has been evaluated in the chiral unitary ap-
proach of ref. [242]. The resonance appears as a quasi-
bound KY state generated from coupled-channel scat-
tering in the πN , ηN , and KY channels. The pho-

tocoupling at Q2 = 0 was predicted to be around
50 − 75 · 10−3 GeV−1/2 with an angle of around −35◦
(the values do not change much if evaluated at the
pole position, as we have checked). This prediction
compares well to the present data analysis, see ta-
ble 2.

Our value of the photocoupling A
1/2
pole for the N(1710)

1/2+ is rather small. Including kaon photoproduction data
into the approach might lead to a different value be-
cause in the Jülich2012 analysis [79] a considerable im-
pact of the N(1710)1/2+ on those channels was observed.
A fairly good agreement with the SAID and the Bonn-
Gatchina results is found in case of the N(1520)3/2−;
the corresponding multipoles E2−(1/2) and M2−(1/2) are
indeed quite large and seem to be well determined, cf.
fig. 28. An agreement with the Bonn-Gatchina group is
also observed for the N(1675)5/2− and the N(1680)5/2+.
In contrast, the large γN coupling of the Δ(1600)3/2+

results in photocouplings A
1/2
pole and A

3/2
pole much larger

than the ones of the other analyses and is reflected
in a resonance-like structure around 1600MeV in the
E1+(3/2) multipole, see fig. 29. A similar structure has
been observed in preliminary results of a new parame-
terization of the MAID approach [235]. In case of the
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prominent Δ(1950)7/2+ all analyses obtain similar re-
sults.

For some very wide resonances (N(2220)9/2+,
Δ(1910)1/2+, Δ(1920)3/2+, Δ(1930)5/2−, Δ(2200)7/2−,
Δ(2400)9/2−), the photocouplings are sometimes sizable
and very different for fit 1 and fit 2. There are very large
uncertainties attached to these values, because the higher
multipoles themselves are not uniquely determined as seen
in the previous section. Second, some of these resonances
are not well determined by hadronic data, see the discus-
sion in ref. [79]. Extreme examples are the N(1750)1/2+

and the Δ(1920)3/2+. Third, as these resonances are so
wide, their contribution to the multipole is difficult to
disentangle from background terms; partial cancellations
of different contributions to a multipole may occur ren-
dering Apole unnaturally large. We do not assign much
significance to the existence or properties of these reso-
nances [79]. The N(2250)9/2− is also very wide, but the
resonance shape is clearly visible in the πN partial wave [2]
and its properties can be determined more reliably.

In the absence of a reliable tool to bring systematic
data uncertainties under control, a rigorous error estimate
is not possible. However, one can obtain a qualitative es-
timate from re-fits based on a re-weighted data set, im-
posing that the χ2 of the re-fit should not deviate from

the best χ2 by more than 5%. Altogether, we have per-
formed seven re-fits assigning weights different from one
to certain subgroups of observables, such that the 5% cri-
terion is fulfilled. The seven subgroups are the observables
dσ/dΩ, Σ, T , P , and (Δσ31, G,H), for both final states,
and dσ/dΩ and Σ only for π+n in the final state. The
errors quoted in tables 2 and 3 reflect the maximal devi-
ations from the values of the best fit, found in any of the
re-fits.

As discussed, the absolute size of these errors is not
well determined, but the relative size among different res-
onances indeed helps to assess how reliably the photo-
couplings at the pole are determined by data. The er-
rors for the lower-lying, well-established resonances are
often considerably smaller than for the higher-spin res-
onances. Also, resonances with a very large width often
exhibit larger errors, as, e.g., in case of the Δ(1930)5/2−
whose photocoupling is basically undetermined. It should
be noted that through the parameterization of eq. (9) res-
onances and background can be excited independently by
the photon, without making assumptions on the underly-
ing dynamics. For wide resonances, this translates gener-
ally in larger uncertainty of the photocoupling at the pole,
reflecting the inherent difficulty to separate background
from resonance contributions in these cases.
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4 Summary

Photocouplings at the resonance pole are well-defined
quantities and, therefore, appropriate to specify the elec-
tromagnetic excitations of resonances. They are given
as ratios of residues that, together with pole positions,
characterize resonances. The corresponding values are
necessarily complex. To determine the photocouplings,
a reliable analytic continuation to the resonance poles
is needed. Here, we rely on the Jülich2012 dynamical
coupled-channel model which guarantees unitarity and
analyticity, and incorporates general S-matrix principles
such as the correct branch points on the real axis and in
the complex plane.

In the present study of pion photoproduction, we have
chosen a highly flexible, model-independent form of the
photo excitation inspired by the GWU/DAC CM12 pa-
rameterization. This enables an accurate fit of over 20000
photoproduction data of the reactions γp → π0p and γp →
π+n, for altogether seven observables: dσ/dΩ, Σ, T , P ,
Δσ31, G, and H. The polarization observables E, F , Cx′

L
,

and Cz′
L

are predicted. Minimal chiral constraints and the
incorporation of some isospin breaking effects allow for a
precise description of the data even very close to threshold.

In order to shed light on the impact of recent high-
precision measurements by ELSA, JLab, MAMI, Spring-8
and GRAAL, we have performed another fit where we
omitted those recent data and included only data on
dσ/dΩ, Σ, T , and P . The predictions of Δσ31, G, and
H based on such a fit turned out to be surprisingly good.
However, the explicit inclusion of actual data on those ob-
servables definitely has a significant quantitative influence
on the values of the resulting resonance photocouplings.

The resonance positions and residues were determined
in the hadronic Jülich2012 analysis. The photocouplings
extracted in the present study are found to be in qualita-
tive agreement with other determinations in most cases.
Since, in general, the phase angle is not small, the tradi-
tionally quoted, real helicity couplings cannot be identified
with the photocouplings at the pole.

To complete the analysis, a comprehensive error es-
timate of extracted multipoles and photocouplings is
planned. The extension of the present approach to other
photoproduction channels is straightforward.
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Table 2. Properties of the I = 1/2 resonances: Pole positions Ep (Γtot defined as −2 Im Ep), photocouplings at the pole
(Ah

pole, ϑ
h) according to eq. (22).

Re Ep −2 Im Ep A
1/2
pole ϑ1/2 A

3/2
pole ϑ3/2

[MeV] [MeV] [10−3 GeV−1/2] [deg] [10−3 GeV−1/2] [deg]

fit→ 1 2 1 2 1 2 1 2

N (1535)1/2− 1498 74 57 50+4
−4 −51 −45+12

−10

BnGa [55] 1501±4 134 ± 11 116±10 7 ± 6

ANL-Osaka [68] 1482 196 161 9

SAID [246] 1502 95 77 ± 5 4

N (1650)1/2− 1677 146 27 23+3
−8 −14 −29+28

−15

BnGa [55] 1647±6 103 ± 8 33 ± 7 −9 ± 15

ANL-Osaka [68] 1656 170 40 −44

SAID [246] 1648 80 35 ± 3 −16

N (1440)1/2+(b) 1353 212 −58 −54+4
−3 −44 −43+2

−5

BnGa [55] 1370±4 190 ± 7 −44 ± 7 −38 ± 5

ANL-Osaka [68] 1374 152 49 −10

SAID [246] 1359 162 −66 ± 5 −38

N (1710)1/2+ 1637 97 15 28+9
−2 13 77+20

−6

BnGa [55] 1687±17 200 ± 25 55±18 −10 ± 65

ANL-Osaka [68] 1746 354 86 106

N (1750)1/2+(a,b) 1742 318 −2 −10+3
−6 8 32−13

+12

N (1720)3/2+ 1717 208 39 51+5
−4 31 −8+9

−4 17 14+9
−3 118 37+29

−59

BnGa [55] 1660±30 450±100 110±45 0 ± 40 150±35 65 ± 35

ANL-Osaka [68] 1703 140 234 2 70 173

N (1520)3/2− 1519 110 −27 −24+8
−3 −18 −24+16

−6 114 117+6
−10 19 19+2

−2

BnGa [55] 1507±3 111 ± 5 −21 ± 4 0 ± 5 132 ± 9 2 ± 4

ANL-Osaka [68] 1501 78 38 2 94 −173

SAID [246] 1515 113 −24 ± 3 −7 157 ± 6 10

N (1675)5/2− 1650 126 22 22+4
−7 24 38+5

−2 21 36+4
−5 −71 −41+4

−4

BnGa [55] 1654±4 151 ± 5 24 ± 3 −16 ± 5 26 ± 8 −19 ± 6

ANL-Osaka [68] 1650 150 5 −22 33 −23

N (1680)5/2+ 1666 108 −12 −13+2
−5 −46 −60+9

−18 124 126+1
−2 −26 −24+3

−2

BnGa [55] 1676±6 113 ± 4 −13 ± 4 −25 ± 22 134 ± 5 −2 ± 4

ANL-Osaka [68] 1665 98 53 −5 38 −177

N (1990)7/2+ 1788 282 19 10+11
−6 −76 −173+108

−155 37 53+23
−28 97 −34+17

−4

BnGa [55] 2030±65 240 ± 60 42±14 −30 ± 20 58±12 −35 ± 25

N (2190)7/2− 2092 363 −48 −83+7
−3 −16 −28+6

−2 70 95+13
−10 −19 −21+3

−5

BnGa [55] 2150±25 330 ± 30 −63 ± 7 10 ± 15 35±20 25 ± 10

N (2250)9/2− 2141 465 −56 −90+25
−22 −91 −99−11

+17 14 49+31
−19 −89 121+36

−43

BnGa [55] 2195±45 470 ± 50 < 10 − < 10 −
N (2220)9/2+ 2196 662 −108 −233+84

−44 −93 −91+10
−6 87 162+41

−38 −76 −71+26
−13

BnGa [55] 2150±35 440 ± 40 < 10 − < 10 −

(a)
Not identified with PDG name.

(b)
Dynamically generated.
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Table 3. Properties of the I = 3/2 resonances: Pole positions Ep (Γtot defined as −2 Im Ep), photocouplings at the pole
(Ah

pole, ϑ
h) according to eq. (22).

Re Ep −2 Im Ep A
1/2
pole ϑ1/2 A

3/2
pole ϑ3/2

[MeV] [MeV] [10−3 GeV−1/2] [deg] [10−3 GeV−1/2] [deg]

fit→ 1 2 1 2 1 2 1 2

Δ(1620)1/2− 1599 71 −28 −28+6
−2 85 92+1

−4

BnGa [55] 1597 ± 4 130 ± 9 52 ± 5 −9 ± 9

ANL-Osaka [68] 1592 136 113 −1

Δ(1910)1/2+ 1788 575 −200 −246+24
−47 −87 47+9

−4

BnGa [55] 1850±40 350 ± 45 23 ± 9 40 ± 90

ANL-Osaka [68] 1854 368 52 170

Δ(1232)3/2+ 1220 86 −116 −114+10
−3 −27 −27+4

−2 −231 −229+3
−4 −15 −15+0.3

−0.4

BnGa [55] 1210 ± 1 99 ± 2 −131±3.5 −19 ± 2 −254±4.5 −9 ± 1

ANL-Osaka [68] 1211 102 −133 −15 −257 −3

SAID [246] 1211 99 −136 ± 5 −18 −255 ± 5 −6

Δ(1600)3/2+ (a) 1553 352 260 193+23
−24 27 15+9

−15 −72 −254+85
−86 −54 −25+10

−6

BnGa [55] 1498±25 230 ± 50 53±10 130 ± 25 41±11 165 ± 17

ANL-Osaka [68] 1734 352 72 −109 136 −98

Δ(1920)3/2+ 1724 863 46 190+50
−22 8 −137+24

−11 −352 −398+70
−67 −85 −87+4

−5

BnGa [55] 1890±30 300 ± 60 130+30
−60 −65 ± 20 115+25

−50 −160 ± 20

Δ(1700)3/2− 1675 303 106 109+10
−10 10 −12+12

−6 141 111+27
−6 27 21+9

−11

BnGa [55] 1680±10 305 ± 15 170±20 50 ± 15 170±25 45 ± 10

ANL-Osaka [68] 1707 340 59 −70 125 −75

Δ(1930)5/2− 1775 646 84 130+73
−96 −55 −177+77

−26 −231 −56+3
−151 82 42+72

−76

ANL-Osaka [68] 1936 210 53 −21 35 −15

Δ(1905)5/2+ 1770 259 61 13+13
−5 −92 19+72

−36 112 72+16
−16 85 67+13

−7

BnGa [55] 1805±10 300 ± 15 25 ± 5 −23 ± 15 −50 ± 4 0 ± 10

ANL-Osaka [68] 1765 188 8 −97 18 −90

Δ(1950)7/2+ 1884 234 −68 −71+4
−4 −18 −29+2

−4 −85 −89+8
−7 −16 −25+3

−1

BnGa [55] 1890 ± 4 243 ± 8 −72 ± 4 −7 ± 5 −96 ± 5 −7 ± 5

ANL-Osaka [68] 1872 206 −62 −9 −76 2

Δ(2200)7/2− 2147 477 41 107+11
−20 −105 −72+5

−5 −29 −131+24
−9 71 78+9

−5

Δ(2400)9/2− 1969 577 −59 −128+46
−12 39 63+24

−3 −15 −115+42
−24 27 84+17

−28

(a)
Dynamically generated.
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Appendix A. Multipole decomposition

We start by writing the reaction amplitude for the (pseu-
doscalar) meson photoproduction process,

γ(k) + N(p) → M(q) + N(p′), (A.1)

where the arguments k, p, q, and p′ stand for the four-
momenta of the incident photon, target nucleon, emit-
ted meson, and recoil nucleon, respectively. Following
refs. [249, 250], the photoproduction amplitude of pseu-
doscalar mesons is written as

J = iJ1	σ · 	ε + J2	σ · q̂	σ · (k̂ × 	ε )

+ iJ3	σ · k̂q̂ · 	ε + iJ4	σ · q̂q̂ · 	ε, (A.2)

where 	q and 	k denote the meson and photon momentum,
respectively; the photon polarization vector is denoted by
	ε. For an arbitrary vector 	a, the notation â stands for the
corresponding unit vector. The Ji (i = 1–4) are functions
of the total energy E and the scattering angle x ≡ cos θ =
q̂ · k̂.

For further convenience, we rewrite eq. (A.2) as [251]

M̂ = −iJ = F1	σ · 	ε + iF2(k̂ × q̂) · 	ε
+ F3	σ · k̂q̂ · 	ε + F4	σ · q̂q̂ · 	ε, (A.3)

where

F1 ≡ J1 − xJ2, F2 = J2, F3 ≡ J2 + J3, F4 ≡ J4.
(A.4)

Note that the forms of the amplitudes given by
eqs. (A.2), (A.3) are coordinate-independent.

The multipole decomposition of the photoproduction
amplitude J in eq. (A.2) is given by [249,250]

⎛

⎜⎜⎝

J1

J2

J3

J4

⎞

⎟⎟⎠ =
4πE

mN

∞∑

L=0

D̃L(x)

⎛

⎜⎜⎝

EL+

EL−
ML+

ML−

⎞

⎟⎟⎠ , (A.5)

where L stands for the orbital angular momentum of the
final nucleon-pion state. The electric and magnetic mul-
tipoles EL± and ML± correspond to our photoproduc-
tion amplitude M in eq. (8) for a given partial wave with
J = L ± 1

2 . The matrix D̃L(x) is given by [249]

D̃L ≡

⎛

⎜⎜⎜⎜⎝

P ′
L+1 P ′

L−1 LP ′
L+1 (L + 1)P ′

L−1

0 0 (L + 1)P ′
L LP ′

L

P ′′
L+1 P ′′

L−1 −P ′′
L+1 P ′′

L−1

−P ′′
L −P ′′

L P ′′
L −P ′′

L

⎞

⎟⎟⎟⎟⎠
,

with P ′
L ≡ P ′

L(x) and P ′′
L ≡ P ′′

L(x) denoting, respectively,
the derivative and the double-derivative of the Legendre
Polynomial of the first kind, PL ≡ PL(x), with respect
to x.

Considering partial waves with JP ≤ 9/2 correspond-
ing to orbital angular momentum L ≤ 5 (remember that

this excludes E5+ and M5+), one obtains from eqs. (A.4)
and (A.5)

F1 = −i
4πE

mN

1
128

[
32 (4E0+ + 9E2+ + 4M2− + 9M4−)

+2 cos(θ)
(
192E1+ + 360E3+ + 525E5+ − 64M1−

+64M1+ + 168M3− + 24M3+ + 345M5− + 15M5+

)

+8 cos(2θ)
(
60E2+ + 105E4+ − 48M2− + 48M2+

+40M4− + 20M4+

)
+ 5 cos(3θ)

(
112E3+ + 189E5+

−144M3− + 144M3+ + 49M5− + 63M5+

)

+70 cos(4θ)
(
9E4+ + 16(M4+ − M4−)

)

+ 450E4+ + 63 cos(5θ)(11E5+ + 25(M5+ − M5−))
]
,

F2 = −i
4πE

mN

1
64

[
64M1− + 128M1+

+24 cos(θ)(16M2− + 24M2+ + 60M4− + 75M4+)

+ 60 cos(2θ)
(
12M3− + 16M3+ + 35M5− + 42M5+

)

+9
(
48M3− + 64M3+ + 125M5− + 150M5+

)

+ 280 cos(3θ)(4M4− + 5M4+)

+315 cos(4θ)
(
5M5− + 6M5+

)]
,

F3 = −i
4πE

mN

1
64

[
192E1+ + 24 cos(θ)

(
40E2+ + 175E4+

+4(4M2− − 4M2+ + 35M4− − 25M4+)
)

+ 60 cos(2θ)
(
28E3+ + 105E5+ + 12M3− − 12M3+

+91M5− − 63M5+

)
+ 1200E3+

+280 cos(3θ)
(
9E4+ + 4M4− − 4M4+

)

+315 cos(4θ)
(
11E5+ + 5M5− − 5M5+

)

+3675E5+ + 64M1− − 64M1+ + 816M3−

−624M3+ + 3525M5− − 2325M5+

]
,

F4 = −i
4πE

mN

3
8

[
− 2

(
4E2+ + 25E4+ + 8M2− − 4M2+

+50M4− − 25M4+

)
− 5 cos(θ)

(
8E3+ + 35E5+

+16M3− − 8M3+ + 70M5− − 35M5+

)

−70 cos(2θ)
(
E4+ + 2M4− − M4+

)

−105 cos(3θ)
(
E5+ + 2M5− − M5+

)]
. (A.6)

Appendix B. Observables

In order to explain our conventions, we explicitly define
the spin-polarization observables first in a coordinate-
independent manner. We then provide expressions for the
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specific coordinate systems relevant for their actual mea-
surements. We will also give some details how these ob-
servables are calculated in the present work in terms of
the multiple amplitudes introduced in sect. 2.2.

Appendix B.1. Definitions of the observables

In the following, we introduce a set of coordinate-
independent unit vectors

n̂3 = k̂, n̂2 =
k̂ × q̂

|k̂ × q̂|
, n̂1 = n̂2 × n̂3. (B.1)

Note that in terms of {n̂1, n̂2, n̂3}, the center-of-momen-
tum (c.m.) Cartesian coordinate system {x̂, ŷ, ẑ}, where
	k + 	p = 	q + 	p ′ = 0, and the laboratory (lab) Cartesian
coordinate system {x̂L, ŷL, ẑL}, where 	p = 0, are given by

{x̂, ŷ, ẑ} = {n̂1, n̂2, n̂3}(cm),

{x̂L, ŷL, ẑL} = {n̂1, n̂2, n̂3}(lab), (B.2)

where the subscript (cm) and (lab) indicate that {n̂1, n̂2,
n̂3} is to be evaluated in the c.m. and lab frame, respec-
tively.

The reaction plane is defined as the (n̂1n̂3)-plane.
Then, n̂2 is perpendicular to the reaction plane.

A real photon has two independent polarization states.
A linearly polarized photon is specified by 	ε‖ and 	ε⊥,
where 	ε‖ (	ε⊥) stands for the photon polarization vector
parallel (perpendicular) to the reaction plane. More gen-
erally, we define the linearly polarized photon states 	ε‖′

and 	ε⊥′ obtained by rotating 	ε‖ and 	ε⊥ (counterclockwise)
by an angle φ about the n̂3-axis, i.e.,

	ε‖′ = cos φ	ε‖ + sinφ	ε⊥,

	ε⊥′ = − sin φ	ε‖ + cos φ	ε⊥. (B.3)

The circularly polarized photon is specified by

	ε± ≡ ∓ 1√
2

(
	ε‖ ± i	ε⊥

)
. (B.4)

For further convenience, we also introduce the projec-
tion operator P̂λ which specifies the state of the photon
polarization; namely, P̂λ	ε ≡ 	ελ. Note that P̂λ′ P̂λ = δλ′λ

and
∑

λ P̂λ = 1. The projection operator P̂λ defined here
is associated with the Stokes vector 	PS [252], which spec-
ifies the direction and degree of polarization of the pho-
ton. For example, P̂± corresponds to PS

z=n3
= ±1, while

P̂⊥ (P̂‖) corresponds to PS
x=n1

= +1 (PS
x=n1

= −1). Fur-
thermore, the difference of the appropriate projection op-
erators can be expressed in terms of the usual Pauli spin
matrices in photon helicity space, i.e., P̂+− P̂− = σn3 and
P̂⊥ − P̂‖ = σn1 .

We now define the coordinate-independent observ-
ables. Provided the reaction amplitude M̂ in eq. (A.3)

is Lorentz invariant, these observables are also Lorentz
invariants. The cross section is defined as

dσ

dΩ
≡ 1

4
Tr[M̂M̂†], (B.5)

where the trace is over both the nucleon spin and photon
polarization. The appearance of the factor 1

4 is due to the
averaging over the target-nucleon spin and the photon-
beam polarization.

The single polarization observables, namely, the beam,
target, and recoil polarization asymmetries, Σ, T , and P ,
respectively, are defined as

dσ

dΩ
Σ ≡ 1

4
Tr[M̂(P̂⊥ − P̂‖)M̂†],

dσ

dΩ
T ≡ 1

4
Tr[M̂σn2M̂†],

dσ

dΩ
P ≡ 1

4
Tr[M̂M̂†σn2 ]. (B.6)

The beam-target asymmetries, E, F , G, and H, are
defined as

dσ

dΩ
E ≡ −1

4
Tr[M̂(P̂+ − P̂−)σn3M̂†]

= −2
1
4

Tr[M̂P̂+σn3M̂†] = 2
1
4

Tr[M̂P̂−σn3M̂†],

dσ

dΩ
F ≡ 1

4
Tr[M̂(P̂+ − P̂−)σn1M̂†]

= 2
1
4

Tr[M̂P̂+σn1M̂†] = −2
1
4

Tr[M̂P̂−σn1M̂†],

dσ

dΩ
G ≡ −1

4
Tr[M̂(P̂⊥′ − P̂‖′)σn3M̂†]

= −2
1
4

Tr[M̂P̂⊥′σn3M̂†] = 2
1
4

Tr[M̂P̂‖′σn3M̂†],

dσ

dΩ
H ≡ 1

4
Tr[M̂(P̂⊥′ − P̂‖′)σn1M̂†]

= 2
1
4

Tr[M̂P̂⊥′σn1M̂†] = −2
1
4

Tr[M̂P̂‖′σn1M̂†].

(B.7)

Here, in the definitions of G and H, the projection oper-
ators P̂‖′ and P̂⊥′ correspond to the photon polarizations
given by eq. (B.3) with φ = π/4. We note that in the above
definition of E and G, we have introduced a minus sign so
that our convention matches that of the SAID group [104]
in the c.m. frame.

The beam-recoil asymmetries, Cn′
i

and On′
i

(i = 1, 3),
are defined as

dσ

dΩ
Cn′

i
≡ −1

4
Tr[M̂(P̂+ − P̂−)M̂†σn′

i
]

= −2
1
4

Tr[M̂P̂+M̂†σn′
i
] = 2

1
4

Tr[M̂P̂−M̂†σn′
i
],

dσ

dΩ
On′

i
≡ −1

4
Tr[M̂(P̂⊥′ − P̂‖′)M̂†σn′

i
]

= −2
1
4

Tr[M̂P̂⊥′M̂†σn′
i
] = 2

1
4

Tr[M̂P̂‖′M̂†σn′
i
],

(B.8)
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associated with {n̂′
1, n̂

′
2, n̂

′
3} which is obtained by rotating

{n̂1, n̂2, n̂3} (counterclockwise) by an angle θ about the
n̂2-axis (cos θ ≡ q̂ · n̂3), such that, n̂′

3 is in the direction of
the emitted meson momentum 	q, i.e., n̂′

3 = q̂. Explicitly,
they are related by

n̂′
1 = cos θ n̂1 − sin θ n̂3,

n̂′
3 = sin θ n̂1 + cos θ n̂3,

n̂′
2 = n̂2. (B.9)

The target-recoil asymmetries, Ln′
i

and Tn′
i

(i = 1, 3),
are defined as

dσ

dΩ
Ln′

i
≡ ζi

1
4

Tr[M̂σn3M̂†σn′
i
],

dσ

dΩ
Tn′

i
≡ 1

4
Tr[M̂σn1M̂†σn′

i
], (B.10)

where ζ1 = −1 and ζ3 = +1. Again, these sign factors have
been introduced to match the SAID convention in the c.m.
frame. A list of conventions used by different groups may
be found in ref. [253].

Appendix B.2. Observables in terms of the coefficient
amplitudes Fi

Any of the observables defined in the previous subsec-
tion may be expressed in terms of the coefficients Fi

in eq. (A.3). The photoproduction amplitude given by
eq. (A.3) can be put straightforwardly into the form

M̂λ =
3∑

m=0

Mλ
mσm, (B.11)

for a given state of photon polarization 	ελ. Here, σ0 ≡ 1
(σi (i = 1, 2, 3), the usual Pauli spin-matrices). Note that
the form given by the above equation is particularly suited
for calculating the observables defined in the previous sub-
section. Then, following ref. [251], the differential cross
section becomes

dσ

dΩ
= |F1|2 +

1
2

(
|F2|2 + |F3|2 + |F4|2

+ 2Re [(F1 + F3 cos θ) F ∗
4 ]

)
sin2 θ. (B.12)

In the cross section above, the incident flux and the
(final-state) phase-space density factors have been left
out for further convenience. Therefore, to get the phys-
ical cross section, dσo

dΩ , one needs to multiply the above
defined cross section by these factors, i.e.,

dσo

dΩ
≡

( mN

4πE

)2 |	q |
|	k |

dσ

dΩ
, (B.13)

in the c.m. frame.

The single polarization observables become

dσ

dΩ
Σ =

1
2

(
|F2|2 − |F3|2 − |F4|2

−2 Re [(F1 + F3 cos θ)F ∗
4 ]

)
sin2 θ,

dσ

dΩ
T = Im

[
(−F2 + F3 + F4 cos θ) F ∗

1

+ (F3 + F4 cos θ) F ∗
4 sin2 θ

]
sin θ,

dσ

dΩ
P = − Im

[
(F2 + F3 + F4 cos θ)F ∗

1

+ (F3 + F4 cos θ) F ∗
4 sin2 θ

]
sin θ, (B.14)

and the double-polarization observables E, F , G and H
read
dσ

dΩ
E = |F1|2 + Re [F ∗

2 (F3 + F4 cos θ) + F ∗
1 F4] sin2 θ,

dσ

dΩ
F =−Re

[
F ∗

2 (F1+F4 sin2 θ)−F ∗
1 (F3 + F4 cos θ)

]
sin θ

dσ

dΩ
G = Im [F ∗

2 (F3 + F4 cos θ) + F ∗
1 F4] sin2 θ,

dσ

dΩ
H = − Im[F ∗

2 (F1 + F4 sin2 θ)

−F ∗
1 (F3 + F4 cos θ) sin θ] sin θ . (B.15)

The beam-recoil polarizations Cn′
1

and Cn′
3

become

dσ

dΩ
Cn′

1
=

{
|F1|2 + Re

[
F ∗

1 (F2 + F3) cos θ

+ (F ∗
1 F4 − F ∗

2 F3 sin2 θ)
]}

sin θ,

dσ

dΩ
Cn′

3
= −|F1|2 cos θ + Re

[
F ∗

1 (F2 + F3)

+ F ∗
2 (F3 cos θ + F4)

]
sin2 θ. (B.16)

In the c.m. frame, where the Cartesian coordinate sys-
tem {x̂′, ŷ′, ẑ′} is identified with {n̂′

1, n̂
′
2, n̂

′
3}(cm), we have

Cx′ = Cn′
1

and Cz′ = Cn′
3
. (B.17)

where Cn′
1

and Cn′
3

given by eq. (B.16) are evaluated in
the c.m. frame.

Experimentalists report the beam-target asymmetries
in the lab frame. Different groups use different lab coordi-
nate frames. We define the lab frame quantities Cx′

L
and

Cz′
L

with respect to the coordinate system {x̂′
L, ŷ′

L, ẑ′L}
which is obtained by a (counterclockwise) rotation of
{x̂L, ŷL, ẑL} (cf. eq. (B.2)) by an angle π − θp′

L
about the

ŷL-axis. Here, θp′
L

stands for the recoil nucleon scatter-
ing angle in the {x̂L, ŷL, ẑL} frame, i.e., cos θp′

L
≡ p̂′L · ẑL

with 	p ′
L being the recoil nucleon momentum in the latter

frame. Explicitly,

x̂′
L = − cos θp′

L
x̂L − sin θp′

L
ẑL,

ẑ′L = sin θp′
L

x̂L − cos θp′
L

ẑL,

ŷ′
L = ŷL. (B.18)



Page 30 of 35 Eur. Phys. J. A (2014) 50: 101

Note that ẑ′L points in the direction opposite to the recoil
nucleon momentum, i.e., ẑ′L = −p̂′L.

The beam-recoil polarization observables in the lab
frame, Cx′

L
and Cz′

L
, can be obtained from Cx′ and Cz′

in the c.m. frame by a combination of Lorentz boosts and
rotations. We have [217,254]

Cx′
L

= cos θr Cx′ − sin θr Cz′ ,

Cz′
L

= sin θr Cx′ + cos θr Cz′ , (B.19)

where the rotation angle θr is given by

cos θr = − cos θ cos θp′
L
− γ3 sin θ sin θp′

L
,

sin θr = γ1

[
cos θp′

L
sin θ + γ3 sin θp′

L
(β1β3 − cos θ)

]
,

(B.20)

with the Lorentz boost parameters

β1 =
|	q |√

	q 2 + m2
N

, β3 =
|	kL |√

	k 2
L + m2

N

, (B.21)

and γi ≡ 1/
√

1 − β2
i . Here, 	q is the meson momentum in

the c.m. frame {x̂, ŷ, ẑ} and 	kL is the photon momentum
in the lab frame {x̂L, ŷL, ẑL}.

We note that our choice of the lab frame, {x̂′
L, ŷ′

l, ẑ
′
L},

coincides with that of the SAID group [104] ({x̂∗, ŷ∗, ẑ∗}),
and that, Cx′

L
= Cx∗ and Cz′

L
= Cz∗ .

In ref. [144], one introduces the cross-section difference
of the parallel and anti-parallel helicity states of the pho-
ton and target nucleon. Explicitly,

Δσ31 =
dσ3/2

dΩ
−

dσ1/2

dΩ
, (B.22)

where σ3/2 and σ1/2 stand for the cross sections with the
parallel (λN−λγ = ±3/2) and the anti-parallel (λN−λγ =
±1/2) initial state helicity, respectively.

Δσ31 is related to the helicity asymmetry E via

Δσ31 = −2
dσo

dΩ
E, (B.23)

where the factor 1/2 is due to the fact that dσo/dΩ (cf.
eq. (B.13)) contains the initial spin averaging factor of 1/4,
while dσ3/2/dΩ and dσ1/2/dΩ contain the spin averaging
factor of 1/2.

Appendix C. Definition of the
photocouplings

Adopting the convention of ref. [246] the photocouplings
are given as the residue of the helicity multipole Ah

L± mul-
tiplied by a complex factor N :

Ãh
pole = N ResAh

L±, (C.1)

where h = 1/2 or 3/2 and

N = IF

√
qp

kp

2π (2J + 1)Ep

mN rπN
. (C.2)

Here, IF is an isospin factor with I1/2 = −
√

3 and I3/2 =√
2/3, qp (kp) is the meson (photon) momentum in the

c.m. frame evaluated at the pole, J is the total angular
momentum, L is the πN orbital angular momentum and
mN the nucleon mass, while Ep and rπN represent the pole
position and the elastic πN residue of the resonance. Note
the convention that ResAh

L± and rπN are defined with a
minus sign compared to the mathematical residues of the
multipole and the elastic πN amplitude, respectively. The
cuts of the square root in eq. (C.2) and also the square
roots implicitly contained in qp, kp, are from the origin to
−∞.

In terms of the electric and magnetic multipoles the
helicity multipoles read

A
1/2
L+ = −1

2
[(L + 2)EL+ + LML+] , (C.3)

A
3/2
L+ =

1
2

√
L(L + 2) [EL+ − ML+] , (C.4)

with total angular momentum J = L + 1/2 and

A
1/2
L− = −1

2
[(L − 1)EL− − (L + 1)ML−] , (C.5)

A
3/2
L− = −1

2

√
(L − 1)(L + 1) [EL− + ML−] , (C.6)

with J = L − 1/2.
The residues of the electric and magnetic multipoles

EL± and ML± can be determined as explained in ap-
pendix C, eq. (C.2) of ref. [81].
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6. B. Golli, S. Širca, Eur. Phys. J. A 49, 111 (2013)
arXiv:1306.3330 [nucl-th].

7. G. Ramalho, M.T. Pena, Phys. Rev. D 84, 033007 (2011)
arXiv:1105.2223 [hep-ph].

8. S. Capstick, Phys. Rev. D 46, 2864 (1992).
9. S. Capstick, W. Roberts, Phys. Rev. D 49, 4570 (1994)

arXiv:9310030[nucl-th].
10. C. Jayalath, J.L. Goity, E. González de Urreta, N.N. Scoc-
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