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Abstract. We have studied theoretically the possibility of ultra-fast manipulation of a single electron spin
in 2D semiconductor quantum dots, by means of high-frequency time-dependent electric fields. The electron
spin degree of freedom is excited through spin-orbit coupling, and the procedure may be enhanced by the
presence of a static magnetic field. We use quantum optimal control theory to tailor the temporal profile
of the electric field in order to achieve the most effective manipulation. The scheme predicts significant
control over spin operations in times of the order of picoseconds – an ultrafast time scale that permits to
avoid the effects of decoherence if this scheme is to be used as a tool for quantum information processing.

1 Introduction

Quantum dots are nanoscopic artificial structures, some-
how created within solid state devices, that contain a small
number of charge carriers (electrons or holes), and display
quantum behaviour in the same manner that atoms or
molecules do [1]. Nowadays it is relatively easy to iso-
late even one single electron. The precise control over
charge and currents on quantum dots was soon achieved
and demonstrated, whereas the experimental techniques
to measure and manipulate the spins followed later on [2].
These developments have contributed to the growth of the
field of spintronics [3], which consists of the control and
manipulation of the spin degrees of freedom in solid state
devices.

Among the many foreseen applications of quantum dot
based spintronics is quantum information processing: the
spin of a single electron is the most typical example of a
two-level system, and this fact soon suggested the possi-
bility of using single-electron quantum dots as a physical
realization of a qubit [4]. One of the reasons for this to
be conceivable is the long decoherence times observed for
the spin degree of freedom in common quantum dots [5,6]
(other reason is the realization, at least at the level of
proof-of-principle, of the DiVincenzo’s criteria [7]). This
decoherence time is to be compared with the time required
for an operation, i.e. the typical time used to change the
state of the system in a controlled manner, with an ex-
ternal field. It is therefore essential to have a means to

a e-mail: jbudagosky@bifi.es

produce very fast operation times, specially since fault-
tolerant operations require multiple possible manipula-
tions within the coherence time.

In order to induce a spin flip in these systems, one can
of course use a time-dependent magnetic field, oscillating
at the Zeeman transition frequency; the Rabi oscillations
will eventually induce full transitions from one state to an-
other. This procedure is called “electron spin resonance”
(ESR). However, this method is not particularly fast, and
moreover it is not easy to produce and localize these mag-
netic fields individually on each quantum dot. Recently,
the alternative use of electric fields has also been proposed
and demonstrated [8–12], since these can indirectly cou-
ple to the spin, for example through spin-orbit coupling.
An electric field may be produced locally on chip through
appropriate gates, or one may attempt optical manipula-
tion via a THz laser pulse, which has the advantage of a
very high frequency, and therefore promise very fast spin
rotations.

In this work we will focus on this second option, the
optical manipulation of spins – or, in any case, the use
of high frequency electric fields, whatever its origin. The
action of THz optical fields on quantum dots, and its cou-
pling to the spin degree of freedom through spin-orbit
coupling, has already been theoretically investigated for
example by Jiang et al. [13]. In this work, we inquire into
how fast can a single spin in a quantum dot rotate when
manipulated with a THz electric field, through the indi-
rect coupling facilitated by the spin-orbit interaction. We
will not limit the allowed external fields to quasi-mono-
chromatic laser pulses (that are typically tuned to some
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resonant frequency), but rather consider the possibility of
shaping the temporal shape of the pulse, in order to find a
path that produces the transition in a faster way than fol-
lowing Rabi’s oscillations. In order to find the shape that
produces the optimal result, we will use quantum opti-
mal control theory (QOCT) [14,15]. This theory provides
a set of techniques to find the best external fields that,
acting on a quantum system, produce the evolution that
is optimal in a certain sense defined by the user.

We have implemented QOCT in the real-space, real-
time, electronic structure code octopus [16–18]. This
code focuses on the time-dependent many-electron prob-
lem based on time-dependent density-functional the-
ory [19,20], although in this case this feature is not nec-
essary since we deal with a single-electron problem. This
implementation of QOCT has already been employed in
recent years to study dynamics of 2D quantum dots and
rings in the presence of THz laser fields [21–23]. By in-
cluding in the model a spin-orbit coupling term (in this
case, we have chosen the Rashba term [24], although this
choice is not important for the conclusions that follow),
we have learned what are the typical transition velocities
that one may expect when manipulating the spin of a sin-
gle electron quantum dot with this kind of electric fields.

The goal has been to construct optimal laser pulses
that drive a single-electron spin from a given initial
orientation in the Bloch sphere to any other target spin
orientation. Within QOCT, such physical goals have to
be mathematically formalized with the definition of a
“target function” that determines the degree of success
achieved for the task that is pursued. In this work we
have considered two possible target definitions: The first
one corresponds to the projection into some pre-defined
spin orientation: the control is exerted on the orientation
of spin without specifying a priori which stationary states
are involved. The second target corresponds to the tran-
sition from the ground state, which is known to have a
dominant spin in one particular direction, to an excited
eigenstate that has a dominant spin in an approximately
opposite direction.

2 Theory

We consider the quantum dots fabricated on top of the
two-dimensional electron gas (2DEG) that can be locked
at the interface of a semiconductor heterostructure. The
most common case is perhaps that of the GaAs/AlGaAs
heterostructure, and therefore we will consider this mate-
rial in the following. The AlGaAs layer is usually doped
with Si, which results in the liberation of free electrons,
that accumulate at the GaAs/AlGaAs interface, and are
trapped in a thin (around 10 nm) layer. The electronic
system can then be considered to occupy a thin potential
well in the direction perpendicular to the interface plane
(hereafter, the z-direction). This thinness (to be compared
to the Fermi wave length of the electrons, large due to the
low electronic density) is the reason for the 2D character
of the system, as the electrons can be considered to occupy
only the lowest subband – at the low temperatures that

are necessary for these experiments to take place. Once the
2DEG is thus created, one may further constrain electrons
in the xy-plane, by placing gates (metal electrodes) on top
of the semiconductor, and controlling their voltages.

The electronic islands created in this manner (the
quantum dots) can then be modeled by considering an
effective mass approximation in 2D, and assuming simple
and smooth confining potentials in the xy-plane – typi-
cally, as we will do below, of parabolic form. In addition,
one may have an external magnetic field, a time-dependent
external electric field (originated by the variation of the
potential applied on the gates, or by a laser source), and,
as we will crucially consider in this work, one or more
spin-orbit coupling (SOC) terms.

There are various forms of SOC that can be present
in this kind of zincblende materials. The bulk crystal
lacks inversion symmetry, which leads to the Dresselhaus
term [25], and in addition the heterojunction produces a
structural inversion asymmetry along the growth direc-
tion that results in the Rashba term [24]. The strength
of the Rashba effect can in fact be tailored with the ap-
plication of external electric fields applied in parallel to
the growth direction. Because of this tunability, we have
chosen to work exclusively with this Rashba term, which
is in many circumstances the dominant one [26,27]. How-
ever, the qualitative conclusions that we will draw out do
not depend on this choice: these SOC terms couple to the
external electric fields in a similar manner.

After all these considerations, the system can be mod-
eled, in the absence of external time-dependent electric
pulses, with the following static effective Hamiltonian:

Ĥ0 =
�

2

2m∗
(
−i∇ − e

�
A(r̂)

)2

+ Vc(r̂)

+ α
[
σ̂ ×

(
−i∇ − e

�
A(r̂)

)]
z

+
g∗

2
μB (σ̂ · B)z .

(1)

The first term corresponds to the electron kinetic energy,
where m∗ is the electron effective mass that we consider to
be m∗ = 0.067me in a GaAs semiconductor medium (me

is the electron mass). The vector potential A(r̂) included
in that term generates the static homogeneous magnetic
field B = Bz, normal to the xy-plane where the system
is confined. The second term,

Vc(r̂) =
1
2
m∗

�ω0

(
x̂2 + ŷ2

)
, (2)

is the confinement potential. The third term corresponds
to the Rashba SOC, whereas the fourth is the Zeeman
term. In those expressions, σ̂ = (σ̂x, σ̂y , σ̂z) is the vector of
Pauli matrices, α is the Rashba parameter that determines
the SOC strength, g∗ is the effective gyromagnetic factor
(we will use g∗ = −0.44 for GaAs), and μB is the Bohr
magneton.

For the confinement potential, we have used �ω0 =
1.8 meV, which is in the range of the typical values in
common experimental realizations of QDs. A rough corre-
sponding estimate of the QD lateral extension is approx-
imately 2

√
�/m∗ω0 ≈ 50 nm, which also lies within the
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typical range of sizes for lithographically etched and gate-
confined QDs. In the following, we will express all the
quantities in effective atomic units, that relate to usual
atomic units (defined by setting e2 = me = � = 1) in
the following manner: a∗

0 = a0 (m∗/κ), H∗
a = Ha

(
κ2/m∗),

t∗0 = t0
(
m∗/κ2

)
, where a0, Ha and t0 are the usual atomic

units of length, energy, and time, respectively. The value
of κ is 13.18 ε0 for GaAs.

In the presence of an external electric pulse, the pre-
vious Hamiltonian must be supplemented with a time-
dependent term, and the system is governed by the time-
dependent Schrödinger’s equation during a time interval
[0, T]:

i
∂

∂t
Ψ(r, t) = Ĥ(t)Ψ(r, t) =

[
Ĥ0 − μ̂ε(t)

]
Ψ(r, t), (3)

where the electron-field interaction assumes the dipole ap-
proximation in the length gauge, being μ̂ = −er̂ the dipole
operator. The time-dependent electric field, ε(t) = ε(t)π
is linearly polarized in some direction determined by the
unit vector π, contained in the xy-plane. The precise di-
rection is in fact irrelevant due to the circular symmetry
of the rest of the Hamiltonian.

The specification of ε(t), together with an initial value
condition, determines the full evolution of the system, via
the propagation of Schrödinger’s equation. The questions
that we wish to answer are the following: is it possible,
by fine-tuning the form of ε(t), to manipulate at will the
spin state of the system in a controllable manner? How
fast can this manipulation be performed, as a function of
the characteristics of the system – the SOC strength, the
presence and magnitude of the external static magnetic
field, etc.?

Optimal control is a suitable tool to address this type
of questions, reformulating them into the following prob-
lem: given a target, defined as the maximization of a func-
tional of the final state of the system (or of its evolution),
what is the time-dependent control function that best ac-
complishes it? In our case, the target must obviously be
related to the spin state of the system, whereas the con-
trol function is the time-dependent electric field ε(t). The
set of possible control functions is the search space for the
optimization algorithm. In practice, the control function
must be discretized in order to proceed with the numer-
ical computations: a set of parameters u1, . . . , uM ≡ u
determines the shape of the function: ε(t) = ε[u](t), and
therefore the domain of the parameters u is the effective
search space.

Regarding the target, it is typically defined through
the expectation value of some operator Ô, i.e. it is a func-
tional of the final state of the system with the form:

F [Ψ ] = 〈Ψ(T )|Ô|Ψ(T )〉. (4)

Since the parameters u determine the shape of the control
function, which in turns determines the evolution of the
system, u → Ψ [u], the problem is reduced to the maxi-
mization of a function of u:

G[u] = F [Ψ [u]] = 〈Ψ [u](T )|Ô|Ψ [u](T )〉. (5)

This maximization is greatly eased if we have a feasible
scheme to compute the gradient of this function, and this
is provided by QOCT:

∇uG [u] = 2Im
∫ T

0

dt 〈χ [u] (t)| ∇uĤ[u](t) |Ψ [u] (t)〉.
(6)

Note that, given the structure of our Hamiltonian:

∇uĤ [u](t) = (r̂ · π)∇uε[u](t). (7)

Also note that a new auxiliary wave function χ[u](t) has
appeared; it is defined as the solution of:

i
∂

∂t
χ[u](r, t) = Ĥ†[u](t)χ[u](r, t), (8a)

and
χ[u](r, T ) = ÔΨ [u](r, T ). (8b)

These equations are similar to the equations for the true
wave function Ψ [u], except for the fact that the boundary
condition (Eq. (8b)) is given at the final time t = T , which
implies that χ[u] must be propagated backwards. There-
fore, the computation of the gradient of G, that requires
of both wave functions, is computed by first propagating
equation (3) forward in time and then equation (8a) back-
ward. Finally, the maxima of G are found at the critical
points ∇uG = 0; in order to find these maxima we use the
quasi-Newton method designed by Broyden et al. [28].

It remains to specify the target operator, and the pa-
rameterization of the control functions. Regarding the for-
mer, we consider two types of targets:

Target A: The goal is to maximize the spin projection
onto some direction ξ, i.e. the operator Ô is defined
as:

Ô = ξ · σ̂ = ξxσ̂x + ξyσ̂y + ξz σ̂z. (9)

For example, if ξz = 1, and ξx = ξy = 0 the goal is
to maximize the z spin projection. The functional F
would therefore be defined as follows:

F [Ψ ] = 〈Ψ(T )|Ô|Ψ(T )〉 =
∑

i=x,y,z

ξi〈Ψ(T )|σ̂i|Ψ(T )〉.

(10)
Target B: The goal is to populate some selected excited

state Φf , that has the required spin orientation. The
target operator is then defined as the projection onto
that state:

Ô = |Φf 〉〈Φf |. (11)

In this case, the functional F is:

F [Ψ ] = 〈Ψ(T )|Ô|Ψ(T )〉 = |〈Φf |Ψ(T )〉|2. (12)

Finally, regarding the parametrization of the control func-
tion, we expand it first in a Fourier series, and then we
enforce several physical constraints: The zero-frequency
component is assumed to be zero (in order to ensure that
the signal over the full propagation time integrates to
zero), and the sum of all the cosine coefficients is also set
to zero (in order to ensure that the field starts and ends
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Fig. 1. Energy levels of the parabolic QD versus the strength
of the Rashba SOC, α, at (a) zero magnetic field and (b) B =
0.5 T. We have labeled the energy levels in (a) as (n, |l|).

at zero). In addition, we enforce a fixed fluence condition:
∫ T

0

dt ε2[u](t) = F0. (13)

The idea is to find the optimal field within the set of fields
with equal integrated intensity – this is the physical mean-
ing of the fluence. The set of parameters u is constructed
by considering first the coefficients of the Fourier expan-
sion, and them enforcing the mentioned constraints – for
details, see [29].

3 Numerical results and analysis

3.1 Effect of Rashba SOC and magnetic field
on the electronic structure

To start, we briefly review the effects of SOC on the
eigenstates of the QD. In the absence of this SOC, and
of any magnetic field, the problem determined by the
Hamiltonian of equation (1) is simply a 2D harmonic os-
cillator. Therefore, the eigenstates are characterized by a
principal quantum number n, that spans a degenerate sub-
space of states that differ by their orbital quantum number
l, and their spin orientation, s =↑, ↓.

In presence of the SOC, the picture changes: Figure 1
shows the QD electronic energy levels as a function of α
at (a) B = 0 and (b) B = 0.5 T. In Figure 1a, the states
are labeled by their (n, l) numbers, which are still good
quantum numbers. In this zero magnetic field case, the
electronic levels undergo an energy shift due to the SOC.
This displacement is proportional to α2. The SOC also
lifts the degeneracy of the electronic states with the same
orbital momenta (those with equal |l|). The separation
between these previously degenerate states is also propor-
tional to α2. Furthermore, at B = 0, the energy levels
remain doubly degenerate in spin (Kramer’s degeneracy).

When a magnetic field is present (B = 0.5 T (Fig. 1b)),
the usual Zeeman splitting appears. But in addition to
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Fig. 2. Fock-Darwin spectrum of the parabolic QD with
(a) α = 0 and (b) α = 0.2 eV Å.

this, we can observe the effect of the SOC: an α-dependent
spin splitting. As we increase the Rashba SOC strength,
this splitting gives raise to an approach of energy levels
with opposite magnetic moments. Note, however, that due
to the SOC, the electronic states are no longer pure spin-
up and spin-down states (in other words, s is no more a
good quantum number). Therefore, the labeling s = ↑, ↓
in Figures 1a and 1b must be understood only in terms of
the spin-branches of each electronic state.

Next, Figure 2 shows the Fock-Darwin spectra with-
out Rashba SOC and with α = 0.2 eV Å. It is clear in
Figure 2b that the SOC affects the dependence of the
electronic states with the magnetic field in comparison
with Figure 2a, lifting spin degeneracy even at vanish-
ingly small magnetic field. In addition, new crossings of
several of the energy levels at low magnetic field regime
appears, as well as anti-crossings at higher magnetic field
strengths. These anti-crossings occur between neighbour-
ing quantum levels with opposite magnetic moments [30].

In the following sections, we will analyze the optimiza-
tion calculations. As described above, these optimizations
are iterative algorithms, and must depart from an initial
electric pulse. In all the cases discussed below, we start
considering a “reference” pulse of the form:

εref(t) = ε0 cos (ω0t) cos
(

π

2
2t − T

T

)
. (14)

The peak amplitude ε0 is always set to 0.1 kV/cm
(∼0.29 e.a.u.). Nevertheless, in order to study the effect
of initial conditions on the optimization, on each case we
have performed four optimization runs starting from four
different (random) initial laser pulses, with the fluence
(Eq. (13)) obtained from the reference pulse and being pre-
served by the optimization procedure. The results shown
below correspond to the best outcomes. The pulse lengths
will be given in units of π/ω0 ∼ 1.15 ps. The pulses are
then represented in a Fourier series, with the constraints
discussed above. One of them must obviously be the es-
tablishment of a cut-off frequency. For all the cases con-
cerning target type A, this cut-off frequency has been set
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Fig. 3. Average spin components (in units of �) as a function of
time for two optimized laser pulses of different lengths, π/ω0 ∼
1.15 ps and 2π/ω0 ∼ 2.3 ps. We have considered two Rashba
SOC strengths: α = 0.05 eV Å (a) and (b) and α = 0.15 eV Å
(c) and (d).

to ωcut-off = 20 (2π/T ), which implies 38 degrees of free-
dom (the number of parameters). For target B, we have
worked with ωcut-off = 10 (2π/T ) (18 degrees of freedom).

In the ground state, the expectation value of σz is pos-
itive (if no magnetic field is present, the ground state is
two-fold degenerate in spin, and then we choose the branch
with positive 〈σz〉). The goal that we want to achieve is
to reverse this spin component. For that purpose, when
using a target of type A, we set ξz = −1, and ξx = ξy = 0.
For target B, we chose an eigenstate, Φf , whose 〈σz〉 com-
ponent has opposite sign to that of the ground state, Φi.

3.2 Target A: spin rotation at zero magnetic field

Figure 3 shows the time evolution of the average spin com-
ponents for two optimized laser pulse lengths: the left pan-
els (Figs. 3a and 3c) display shorter pulses (T = π/ω0),
and the right panels correspond to double pulse lengths.
On the other hand, the top panels (Figs. 3a and 3b)
correspond to a weaker SOC strength, α = 0.05 eV Å,
whereas the bottom panels (Figs. 3c and 3d) correspond
to a stronger α = 0.15 eV Å. If we compare the shorter
pulses first (Figs. 3a and 3c) it becomes evident how the
increased strength of the Rashba SOC results in a spin
orientation closer to the target at the end of the pulse –
yet this optimization is still not significant. An increase
in the pulse lengths, however, results in a very good final
outcome even for α = 0.05 eV Å. In fact, as it can be seen
in Figure 3d, note that the component 〈σz〉 oscillates close
to −1/2 even before the end of the pulse. This tells us that,
for that value of the SOC strength, an even shorter laser
pulse duration would suffice to reach a good 〈σz〉 value.

In Figure 4 we show the optimal laser pulses that pro-
duce the results of Figure 3. Note the very different aspect
of the fields needed to optimize the shorter and longer
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Fig. 4. Optimal laser pulses corresponding to Figure 3.
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Fig. 5. Average spin components as a function of time for an
optimized laser pulse of length π/ω0, with B = 0.5 T and four
Rashba SOC strengths: (a) α = 0.05 eV Å, (b) α = 0.1 eV Å,
(c) α = 0.15 eV Å and (d) α = 0.2 eV Å.

pulses – the latter having a more complex structure. We
also display in the inset of each figure the power spectrum
of the pulses. The optimal pulses obtained with weaker
and stronger SOC do not differ significantly in shape, both
in real time and in the frequency domain.

3.3 Target A: spin rotation at non-zero magnetic field

We now consider laser pulse optimizations in the pres-
ence of an external magnetic field of B = 0.5 T. Figure 5
shows the results for a pulse of length π/ω0 and four dif-
ferent Rashba SOC strengths. The external magnetic field
competes now with the “effective” magnetic field associ-
ated to the Rashba SOC and forces the ground state to
have a 〈σz〉 closer to 1/2. This is evident by looking at the
value of 〈σz〉 at the initial times in Figure 5, compared
with the initial values of the previous section. We can also
observe that increasing the Rashba SOC allows to improve
the spin rotation, getting a result very close to the target
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Fig. 6. Optimized laser pulses corresponding to Figure 5.
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Fig. 7. Average spin components as a function of time for an
optimized laser pulse of length π/ω0, with B = 0.5 T and four
Rashba SOC strengths: (a) α = 0.05 eV Å, (b) α = 0.1 eV Å,
(c) α = 0.15 eV Å and (d) α = 0.2 eV Å.

for α = 0.20 eV Å. Note that, due to the presence of the
magnetic field, the starting point is farther from the tar-
get, compared to the cases with zero magnetic field, which
means that the spin state must perform a longer path.
Figure 6 shows the optimal pulses associated to Figure 5.
They are qualitatively similar to those shown in Figure 4.

Let us now consider pulse lengths of 2π/ω0 (Fig. 7).
In this case, notice that the optimization algorithm is ca-
pable of finding pulses that reach the target with smaller
SOC strengths than those required with shorter pulses.
Regarding the optimal pulses (Fig. 8), note that these
look very different to the shorter pulses of length π/ω0.
One can see how the increase of the SOC strength pro-
duces an apparent increase in the number of oscillations
of the pulse envelope. In the inset of this figure, note how
this increase of the SOC strength results in a splitting of
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Fig. 8. Optimized laser pulses corresponding to Figure 7.
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Fig. 9. Expectation value of the z-component of the spin at
t = T as a function of Rashba SOC strength for two laser pulse
lengths.

the initial single band into two separate bands. The lower
frequency band is associated with the oscillations of the
envelope and moves to higher frequency than the initial
band as we increase the strength of the SOC.

Finally, Figure 9 shows the expectation value of σz ,
at the end of the pulse, as a function of α for the two
pulse lengths considered. Here it becomes evident how the
increase of pulse length allows for a better result. It is also
evident that one may get a faster spin-flip through the
tuning (increase) of the Rashba SOC.

3.4 Target B: spin rotation at non-zero magnetic field

We now describe the results obtained when using a tar-
get of type B. We have chosen to maximize the transition
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Fig. 10. (a) Occupation of the 12 first eigenstates as a function
of time, (b) average spin components as a function of time and
(c) optimized laser pulse. The length of the pulse is 60 (π/ω0),
B = 0.5 T and α = 0.2 eV Å. The inset in (c) shows the power
spectrum in frequency of the optimized laser pulse.

between the two spin branches of the ground state, i.e.,
E0,0,↑ → E0,0,↓ (in the following, the figures will label
these two states as i = 0 and i = 1, respectively). This
transition is only allowed when the two branches are split
by the effect of a magnetic field, and therefore, for this cal-
culation, we have set the magnetic field and Rashba SOC
strengths as 0.5 T and 0.2 eV Å, respectively. The cutoff
frequency, set in this case as 10 (2π/ω0), is well above the
resonant frequency associated with this transition, ω0→1.

Figure 10a shows the time evolution of the occupation
of the first 12 eigenstates of the QD in response to an
optimized laser field of length 60 (π/ω0). The occupation
of state i = 1 reaches a maximum occupancy of ∼0.98
at the end of the pulse, and the occupation of the ground
state decays to zero quickly. During the course of the pulse,
the global occupation of those 12 first eigenstates decays
almost to zero several times, indicating that in these time
intervals the electron is occupying higher energy states.
Below, Figure 10b shows the time evolution of 〈σx〉, 〈σy〉
and 〈σz〉. As expected, the final spin orientation of the
electron agrees almost completely with the expectation
values of the spin components in state i = 1.

Figure 10c shows the associated optimal laser field. It
is important to remember that, in the case of target B,
we attempt a state-to-state transition of frequency ω0→1,
indicated by a vertical thick gray line in the inset of Fig-
ure 10c. In general, despite the random character of the
initial guess field of the search, the optimal pulse is char-
acterized by the presence of a wide distribution of frequen-
cies around ω0→1.

This is of course not surprising. However, the optimal
pulse is not merely a quasi mono-chromatic pulse with the
transition frequency. We have in fact attempted the op-
timization by starting from these type of pulses, finding

that the optimization alters that starting point by adding
the necessary extra frequencies to obtain a significantly
better result. These runs (not shown here), provided bet-
ter solutions than the runs started from purely random
pulses. Finally, we note that the complexity of the tran-
sition process found by the QOCT procedure is also ev-
idenced from the population of many eigenstates during
the evolution, far from the two-state model that is used to
explain Rabi oscillations. This population of “auxiliary”
states is of course also present when using target A, a
fact to be expected since the states in these case are not
“controlled”. Indeed, when using target A even the final
state is composed of a superposition of a large number of
eigenstates.

We finish with one comment about the “robustness”
of the optimized pulses, i.e. their stability with respect
to small variations. Experimentalists cannot generate ab-
solutely precise fields, and therefore one may wonder how
well an approximated pulse performs, compared to the op-
timal one. For example, one may wonder whether or not
the optimization is critically dependent on the phases of
the Fourier components of the pulse (the power spectrum
can be controlled with better precision). We have studied
the stability of the optimization of some of the previously
treated cases. For that purpose, we modified the phases
of the Fourier coefficients of the pulse, adding them ran-
dom numbers. We have considered three ranges of fluctu-
ations for such term, namely: [−π/10, π/10], [−π/4, π/4]
and [−π/2, π/2]. In order to compute relative deviations
of the target 〈σz〉 value with respect to the original, for
each one of the three cases we have performed 10 runs
using different sets of random numbers. The relative devi-
ations found were approximately 2% ([−π/10, π/10]), 14%
([−π/4, π/4]) and 87% ([−π/2, π/2]). Thus, one can con-
clude that the changes in the optimal pulses generated by
these random fluctuations do not change the results sig-
nificantly as long as the phase fluctuations do not exceed
the interval [−π/4, π/4], which in fact implies quite wide
variations of the phase.

4 Conclusions

We have theoretically demonstrated the possibility of ma-
nipulating the electronic spin in a semiconductor QD, by
means of ultrashort laser pulses, making use of the spin-
orbit coupling. We have explored the time scales neces-
sary to perform spin transformations, making use of opti-
mized laser pulse shapes, found with the help of quantum
optimal control theory. These time scales depend on the
strength of the spin-orbit coupling, and of the presence
or absence of an external magnetic field, helpful to fix a
value for the initial spin orientation.

The search for an optimal pulse, within QOCT, can
be done in multiple ways, and the first choice to make is
the design of a target functional. We have shown results
for two types of targets. In the first type, the functional
only depends on the spin projection value, without plac-
ing explicit restrictions on the number of the QD eigen-
states which can participate in the representation of the
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final state. The results show full spin rotations in about 1
or 2 ps, depending on the value of the spin-orbit coupling.
In the second type of target, the spin control is achieved
indirectly through the control of a particular transition
between the ground state and an excited state which has
the desired spin orientation. In this case, if the target tran-
sition involves one of the lowest excited states, the pulse
length must be at least an order of magnitude greater than
those used in the case of the first target.

In conclusion, our simulations support the idea of ul-
trafast manipulations of electronic spin in 2D quantum
dots, by means of the electric fields of THz laser pulses,
using spin-orbit coupling to transform the electric signal
into a spin rotation.

The authors are grateful for the support offered by the Euro-
pean Community FP7 through the CRONOS project, Grant
agreement No. 280879.
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