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Abstract. We report numerical calculations on the mechanical effects of light on micrometer-sized dielectric
ellipsoids immersed in water. We used a simple two-dimensional ray-optics model to compute the radiation
pressure forces and torques exerted on the object as a function of position and orientation within the laser
beam. Integration of the equations of motion, written in the Stokes limit, yields the particle dynamics that
we investigated for different aspect ratios k. Whether the beam is collimated or focused, the results show
that above a critical aspect ratio kC , the ellipsoids cannot be stably trapped on the beam axis; the particle
never comes to rest and rather oscillates permanently in a back-and-forth motion involving both translation
and rotation in the vicinity of the beam. Such oscillations are a direct evidence of the non-conservative
character of optical forces. Conversely, stable trapping can be achieved for k < kC with the particle standing
idle in a vertical position. These predictions are in very good qualitative agreement with experimental
observations. The physical origin of the instability may be understood from the force and torque fields
whose structures greatly depend on the ellipsoid aspect ratio and beam diameter. The oscillations arise from
a non-linear coupling of the forces and torques and the torque amplitude was identified as the bifurcation
control parameter. Interestingly, simulations predict that sustained oscillations can be suppressed through
the use of two coaxial counterpropagating beams, which may be of interest whenever a static equilibrium
is required as in basic force and torque measurements or technological applications.

1 Introduction

That light can exert forces on material objects has been
known for more than a century [1, 2]. Momentum trans-
fer from photons to matter results in physical motion and
this can be most easily evidenced with lasers at the meso-
scopic scale of biological cells [3–6] and down to atoms
(laser cooling) [7–9]. Radiation pressure (RP) forces ex-
erted on solid bodies is the main subject of the present
article, which is a follow up work of a Part I paper [10]
dedicated to an experimental investigation of the mechan-
ical effects of light on non-spherical microparticles. Here,
we rather focus on numerical simulations.

Our interest in the field was initially fueled by the sur-
prising optical levitation properties of elongated (prolate)
micrometer-sized dielectric ellipsoids [11,12]. In those ex-
periments, the ellipsoids were immersed in water and we
used an optical levitator (OL) made of a moderately fo-
cused laser beam to characterize the mechanical response
of the illuminated particle. Unlike the widespread optical
tweezers (OT) [4], OL only provides a 2-dimensional (2d)
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trap but a wealth of useful information can already be ex-
tracted in this simple geometry which allows long-working
distances. Our results show that, while “short” ellipsoids
can be radially trapped and lifted up with no surprise, sim-
ilarly to spheres, longer ellipsoids behave quite differently:
such particles cannot be radially trapped during ascension
and rather undergo a back-and-forth motion in and out of
the beam involving both translations and rotations. In-
creasing the laser power makes the particle tumble faster,
leading to light-driven sustained oscillations. Understand-
ing this “particle dance”, the matter of our work, is a
problem of general interest in the frame of optical manip-
ulation of particles with arbitrary shapes, which is much
less mastered than that of spheres [13–15].

As pointed out in [10], other observations of “danc-
ing particles” have been previously reported with micro-
rods [13, 16], nano-fibers [17] or disks [18, 19] held in op-
tical tweezers. However, no formal interpretation of the
phenomena was provided as far as we know1. On the the-
oretical and numerical sides, a bunch of studies dealt with
the trapping properties of rods [20, 21], cylinders [22–25],
prolate and oblate ellipsoids [26–29]. Both attraction and

1 The model worked out in [19] is irrelevant to our situation;
see [10,11].
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repulsion from the laser beam are predicted, as shortly
reviewed in [10]. The important point is that, in addition
to shape dependence, both the location and orientation
of the particle within the beam greatly alter its response
to the incoming laser light. Non-zero optical torques oc-
cur, even for particles made of a homogeneous isotropic
non-absorbing material illuminated by linearly polarized
beams.

However, none of the available computations has pre-
dicted the kind of oscillations we encountered with ellip-
soids in bulk water [11, 12]. In [11] we showed that sim-
ple simulations based on a 2-dimensional ray-optics model
of the ellipsoid-laser beam interaction were successful in
capturing the main trends of the particle dynamics. Thus,
RP forces alone can account for the observed oscillations.
Following the same approach, the purpose of this paper
is to provide additional results and make new qualita-
tive predictions. Of primary importance is the influence
of the beam divergence on the onset of oscillations. An
important point which was not explored in [11] is the in-
fluence of beam diffraction on the existence of oscillations.
Only a collimated beam, i.e. a set of parallel rays was as-
sumed in [11]. However the laser beam used in experiments
was focused down to 1.3μm in beam waist radius, mean-
ing that beam diffraction was significant on the scale of
the particle size (the Rayleigh length, about 15μm, was
comparable to the ellipsoid major axis). We then cannot
ignore beam divergence as another control parameter in
determining the particle dynamical response. Introduc-
ing beam diffraction effects into a ray-optics simulation
is not straightforward, but, at least, we may test the in-
fluence of the finite beam divergence using a set of rays
with an aperture comparable to that of the actual laser
beam, in the far field. In this way, the simulation gives a
hint about the effect of more or less focusing the actual
laser beam, i.e. of varying its beam waist. We also explore
the possibility of getting rid of these oscillations through
the addition of a second counterpropagating beam, which
could be useful from a technological viewpoint. Indeed,
the occurrence of oscillations is a major drawback to-
wards the design of laser-assisted assembled microstruc-
tures which require precise positioning and orientation of
particles such as nanowires, nanotubes, graphene or quan-
tum dots [16,17,30,31].

The outline of the paper is as follows: in sect. 2,
we present the details of our calculations based on a 2-
dimensional ray-optics model of the RP forces and torques
exerted on a prolate ellipsoid. The numerical results are
reported in sect. 3 for both a collimated and a focused
laser beam. We provide detailed force and torque maps
in the parameter space. These maps turn out to be very
valuable in unraveling the physical origin of the afore-
mentioned sustained oscillations. State diagrams are com-
puted to summarize the various dynamical states of the
particle as a function of its aspect ratio and position in-
side the beam. Section 4 deals with preliminary results
obtained in the presence of a second counterpropagating
beam. Depending on the respective powers of the beams,
sustained oscillations are predicted to disappear. A dis-

cussion and conclusion close the paper along with some
prospects.

2 Model

The goal of this part is to set up a simulation of the el-
lipsoidal particles’ oscillations using a very simple optical
model based on ray-optics [32]. Our approach is restricted
to 2 dimensions which, as we shall see below, turns out
to be good enough to account for the main experimental
facts.

To simulate the particle’s response, we must first com-
pute the optical force F and torque Γ acting on the par-
ticle in a laser beam of given characteristics. In a rigorous
version, the problem amounts to calculating the electro-
magnetic (e.m.) field scattered by the particle. In theory,
F and Γ can then be obtained from the Maxwell stress
tensor of the whole e.m. field (incident+scattered) by in-
tegration over the whole surface that surrounds the ob-
ject [14,33].

When the particle is not more than a few micrometers
in size, the wave nature of the e.m. field must be taken into
account. The case of a sphere that scatters light from a
focused laser beam has been the matter of numerous ded-
icated works since the eighties. Rigorous solutions to this
problem have been obtained and are known as “Gener-
alized Lorenz-Mie Theory” (GLMT) [34, 35]. The GLMT
has been extended to spheroidal shapes (i.e. cylindrically
symmetrical ellipsoids) by Xu et al. [36] and for particle
aspect ratios (k) up to 1.5.

In general, calculation of the scattered field by parti-
cles of more complicated shapes is a very difficult task that
can only be performed using numerical techniques. Dif-
ferent methods have been proposed to handle about any
particle shape, namely the discrete dipole approximation
(DDA) [25, 27, 37–40], the finite difference time domain
(FDTD) [41,42], the vector finite element [43], multi-level
multipole [44,45], and T-matrix methods [46,47].

Calculating the field scattered by our ellipsoidal parti-
cles, of large aspect ratio and more than 10μm in size, is
currently at the limit of possibilities of existing numerical
methods. As aforesaid, we thus opted for a very simpli-
fied analysis based on ray-optics (RO) in two dimensions.
The assumptions made in the model are rough, meaning
that the simulation has no pretention to be quantitatively
accurate. In spite of these limitations, we will see that
the model yet captures the main trends of the particle’s
mechanical response to the laser beam.

2.1 Radiation pressure force and torque

In the RO regime, we assume that the laser beam (λ0 =
514.5 nm, total power PT ) consists of a bundle of indi-
vidual rays (typically, a few thousands), propagating up-
wards in the z-direction. The intensity of rays, I(r), at
point r = xx̂ + zẑ of a 2-dimensional Cartesian system
of coordinates (x, z) with unit vectors (x̂, ẑ), follows a
Gaussian distribution along x. Since we only address the
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problem in 2 dimensions, rays keep inside the same plane
during propagation. In the first version of the model, we
made the assumption of a collimated beam (parallel rays)
which amounts to supposing that the laser beam struc-
ture is invariant along z. But this is not exactly so in the
experiments because the beam waist (2ω0 ≈ 2.6μm) is
small enough for diffraction to be visible on the scale of
the particle size (the diffraction length, or Rayleigh range,
is about 15μm while the ellipsoid long axis exceeds 20μm
for k = 3). Diffraction effects are not included in the
RO model (by definition), but we may simulate a focused
beam, over an aperture approximately equal to that of the
real laser beam in the far field. The beam waist is located
at z = 0 in the laboratory frame; the rays are emitted in
the z < 0 region and they all converge towards the ori-
gin, i.e. the (x = 0, z = 0) point. With no particle in the
beam path, all rays pass through the origin and continue
their propagation in straight lines in the z > 0 region. The
beam radius ω(z) of the 1/e2 irradiance contour, after the
wave has propagated a distance z, is assumed to be given
by ω(z) = θDz, where θD is the beam divergence which
is supposed to be small (θD � π/2). We may then define
a parameter ω0 such that θD = λ/πω0, where ω0 repre-
sents the beam waist of an actual Gaussian laser beam
which, in the far field, has the same divergence as that
of our model laser beam. The far-field condition holds for
z � zR = πω2

0/λ, where zR is called the Rayleigh range.
The power Pi of the i-th ray of our model Gaussian beam
at a given point r is given by

Pi = I(r)ΔA =
2PT

πω2(z)
exp

[
− 2r2

ω2(z)

]
ΔA, (1)

where ΔA is the projection, in the xy plane, of the in-
finitesimal surface ΔS illuminated by the ray on the par-
ticle surface at the incident point. In our 2d approach,
ΔA simply amounts to the beam sampling spacing Δx in
the x-direction. In the case of a collimated beam, ω(z) is
constant and equals ω0.

The procedure we used to compute the RP forces
and torques is quite similar to that described in detail
in refs. [28, 48–51]. The ellipsoidal particle is assumed to
be made of a homogeneous, isotropic and non-absorbing
material. Each incident ray becomes multiply reflected
and refracted along the ellipsoid’s boundary, each time
transferring momentum between the ray and the particle.
Each scattering event j therefore contributes an elemen-
tary force fj . From fig. 1 we see that, for the initial ray
strike (j = 0)

f0 =
n1P

c

(̂
i0 − R0r̂0 − n21T0t̂0

)
, (2)

whereas for the successive ray strikes (j ≥ 1)

fj =
n1P

c
T0

[
n21

(
j−1∏
k=1

Rk

)
îj −

(
j−1∏
k=1

Rk

)
Tj t̂j

−n21

(
j∏

k=1

Rk

)
r̂j

]
, (3)

Fig. 1. (a) Schematic of the 2d ray-optics (RO) model used
to compute the radiation pressure force due the scattering of a
single incident ray of power P by a dielectric prolate ellipsoid.
A few reflected, refracted and transmitted rays are shown for
illustration (see text for the definition of symbols). (b) The
ellipsoid’s long axis makes an angle θ with respect to the z-axis.
60 reflections inside the ellipsoid are shown here for illustration.
The laser beam has a Gaussian intensity profile along x. (c)
Two different levitation geometries used in experiments [11,
12]: in bulk water (left panel) or in contact to the top glass
of the sample chamber (right panel). The arrows indicate the
oscillatory behavior of the ellipsoid if k > kC (see text).

where îj , r̂j , t̂j are unit vectors denoting, respectively,
the incident, reflected and transmitted ray’s directions at
boundary points Mj . c is the speed of light in vacuum and
n1, n2 (with n21 = n2/n1) are the refractive indices in the
continuous (external) medium and inside the particles, re-
spectively. Rj , Tj denote the Fresnel power reflectance and
transmittance and P is the power of the initial incoming
ray. Since r̂j = îj+1 for all j ≥ 1, the force f exerted by a
single ray on the particle is obtained by vector summation
of all scattering events and may be put into the form

f =
n1P

c
q, with q = î0−R0r̂0−T0

∞∑
j=1

Tj

(
j−1∏
k=1

Rk

)
t̂j .

(4)
The modulus of the dimensionless vector q is often called
the “trapping efficiency of the ray”. The elementary force
fj (eqs. (2), (3)) contributes an elementary torque τ j =
rj × fj , where rj is the vector joining the ellipsoid center
C, taken as the reference point, to the impact point Mj .
The torque due to a single ray is then simply given by

τ =
∞∑

j=0

τ j . (5)

The unit vectors îj , r̂j , t̂j are found using the classical laws
of reflection and refraction given by the Fresnel equations.
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For the initial ray strike (j = 0), we have

r̂0 = î0 + 2c0n̂0,

t̂0 = n12̂i0 +
[
n12c0 −

√
1 + n2

12 (c2
0 − 1)

]
n̂0,

where c0 = −̂i0 · n̂0 and n12 = n1/n2. For j ≥ 1, the above
relations change to

r̂j = îj − 2cjn̂j ,

t̂j = n21̂ij +
[
−n21cj +

√
1 + n2

21

(
c2
j − 1

)]
n̂j ,

with cj = îj · n̂j . As the Fresnel coefficients Rj , Tj depend
on polarization, we suppose that the beam is linearly po-
larized either along x̂ (S mode) or ŷ = ẑ × x̂ (P mode).
In such cases, Rj and Tj are given by

RS
j =

∣∣∣∣∣
n21(̂ij · n̂j) − (̂tj · n̂j)
n21(̂ij · n̂j) + (̂tj · n̂j)

∣∣∣∣∣
2

,

RP
j =

∣∣∣∣∣
(̂ij · n̂j) − n21(̂tj · n̂j)
(̂ij · n̂j) + n21(̂tj · n̂j)

∣∣∣∣∣
2

,

with T S
j = 1−RS

j and TP
j = 1−RP

j . In contrast to spheres,
when a ray enters an ellipsoid, total internal reflection may
occur if the incident angle α exceeds the critical angle
αc = arcsin(n12). Hence, we have

Rj =

{
RS

j or RP
j if αj ≤ αc,

1 if αj > αc,

Tj =

{
1 − Rj if αj ≤ αc,

0 if αj > αc.

We keep track of the propagation of a given ray inside
the ellipsoid using a standard ray-tracing technique [32]
and stop the propagation when the ray’s power has de-
creased by a factor of about 103 (≈ 0.1% of the initial
ray’s power remains) [49]. We checked that pushing the
computation further (i.e. with a factor greater than 103)
did not significantly change the final values of f (eq. (4))
and τ (eq. (5)).

The total net force F acting on the ellipsoid is cal-
culated by summing the contributions of the individual
rays that hit the particle surface, i.e. F =

∑Nr

i fi =
n1
c

∑Nr

i Piqi, where Nr is the number of rays impinging on
the particle, Pi (eq. (1)) and qi (eq. (4)) are the power and
trapping efficiency vector of the i-th ray, respectively. Sim-
ilarly, the net torque Γ acting about the center of mass of
the ellipsoid is computed by adding the individual torques
due to each ray (eq. (5)), namely Γ =

∑Nr

i τ i.
The calculation of F and Γ is worked out for various

positions x, z and tilt angles θ of the ellipsoid, |x| ≤ xmax,
|θ| ≤ θmax, with a corresponding (121 × 36) resolution.
Note that these computations are not restricted to small
excursions, meaning that the ellipsoid may move almost

completely out of the beam, as observed in the experi-
ments. We thus obtain maps of F and Γ for different con-
figurations of the ellipsoid with respect to the laser beam.
Some examples of such maps will be provided below.

2.2 Hydrodynamic friction force and torque—
equations of motion

In addition to RP forces and torques, the particle im-
mersed in water also experiences gravity and hydrody-
namic friction forces and torques, both in translation
(FHx) and rotation (Γ Hθ). Gravity intervenes through
the particle weight, corrected for buoyancy: m̃g. Inertia
forces and torques are negligible in the experiments re-
ported in [10]. This can be checked by estimating the par-
ticle Reynolds number Re = ρUa/η, with ρ = 1.05 g cm−3

(the density of polystyrene latex) and η ∼= 1mPa s (the
water viscosity at room temperature). a is the ellipsoid
semi-long axis and U is the typical velocity of the oscil-
lating ellipsoid which we estimate through U ≈ aν, where
ν is the frequency of oscillation. Taking a = 15μm and
ν ≤ 5Hz, we get Re ≈ 10−3. Thus, to a first approxima-
tion, FHx and Γ Hθ reduce to their Stokes limit

FHx = −γx ẋ x̂, (6)

Γ Hθ = γθ θ̇ ŷ, (7)

where γx, γθ are the friction coefficients for the motion of
the ellipsoid in translation along x̂ and in rotation around
ŷ, respectively. The dot means time derivative and θ is
the particle tilt angle with respect to the vertical axis (see
fig. 1b). In the above equations, we supposed that trans-
lational and rotational friction were decoupled.

We obtain the equations for particle motion by writing
that the total force and torque (RP + weight + hydrody-
namics) acting on the particle are null. Here, we give the
simplified form of the equations, which holds in the limit
of small tilt angle (θ � π/2) (set 1)

F · x̂ = γx ẋ, (8)

F · ẑ = m̃g + γz ż, (9)

Γ · ŷ = −γθ θ̇, (10)

where γz is the friction coefficient for a translational mo-
tion along ẑ. θ̇ is conventionnally taken > 0 when the
particle rotates counterclockwise. Due to the minus sign
in eq. (10), a positive torque makes the particle rotate
clockwise. After integration, eqs. (8)-(10) describe the el-
lipsoid motion in bulk water away from any boundaries.
However, experimentally, it turned out much more conve-
nient to observe the particle dynamics when it was lifted
up to the top glass of the sample chamber [11,12]. In such
a configuration, which we refer to as “contact”, the el-
lipsoid center of mass remains at approximately constant
altitude. We may model this particular situation through
the addition of a contact force, Fc, exerted on the cham-
ber ceiling. Assuming that the contact condition does not
significantly alter the hydrodynamic friction, Fc is simply
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vertical and given by Fc = Fz ẑ, where Fz = F · ẑ is the
vertical component of the RP force. As already pointed
out, the presence of the water-glass interface has no di-
rect influence on the particle dynamical behavior. Indeed,
in the experiments, the oscillations are general, be the el-
lipsoid located in the bulk or in contact to a solid or soft
boundary [11,12]. Therefore, the model should be able to
reveal oscillations, even if hydrodynamic effects related to
the proximity of a boundary are ignored. A specific lubri-
cation term such as that elaborated in [19] may well play
a role but is not essential in the model. In the contact
configuration, eqs. (8)-(10) change to (set 2)

F · x̂ = γx ẋ, (11)

Γ · ŷ + R̃ θ F · ẑ = −γθ θ̇, (12)

where R̃ is a length given by R̃ = Rk−4/3(k2 − 1) (see
appendix A for its derivation). The second term on the
l.h.s. of eq. (12) is a new term due to the torque exerted
by the contact force (Fc) when the ellipsoid tip is in con-
tact to the top surface. This term is not essential for the
onset of oscillations and we leave it there for the sake of
completeness.

As we needed values for the friction coefficients (γx, γz,
γθ), we adopted those derived for prolate ellipsoids in 3d.
A standard formulation reads: γx = 6πηbGb, γz = 6πηaGa

and γθ = 6ηV Gθ. Here V is the ellipsoid volume, η is the
water viscosity (∼= 1mPa s at room temperature), b is the
ellipsoid semi-short axis, while Ga, Gb, Gθ are geometrical
factors which depend only on the aspect ratio k (= a/b);
they all increase with k and explicit expressions, derived
from Perrin’s equations, can be found in [52,53]. Note that
V is constant in our problem, since this is the volume of
the mother sphere from which the ellipsoids are derived
(V ∼= 524μm3 for a sphere of radius R = 5μm).

Although we will primarily focus on prolate ellipsoids
(k > 1) hereafter, note that the 2-dimensional representa-
tion can also address the case of oblate ellipsoids (k < 1)
through the k → 1/k transformation. However, it cannot
deal of course with non-axisymmetric particles for which
the third dimension is required.

Prior to computations, the above equations were non-
dimensionalized using the following characteristic quanti-
ties: the length scale is set by the radius R of the mother
sphere whereas the force scale is set by F0 = PT /c, where
PT is the total beam power. The time scale is defined by
t′ = ηR2/F0, which corresponds to the characteristic time
for the mother sphere to be trapped in on-axis configura-
tion, within a numerical factor. Hence, we used the follow-
ing dimensionless variables: F ∗

x = Fx/F0, F ∗
g = m̃g/F0,

Γ ∗
y = Γy/(F0R), t∗ = t/t′, x∗ = x/R, z∗ = z/R, γ∗

x =
γx/(ηR), γ∗

z = γz/(ηR) and γ∗
θ = γθ/(ηR3). Note that

F ∗
x , Γ ∗

y do not depend on PT for they are only functions of
(x∗, z∗, θ, k) whereas F ∗

g ∝ P−1
T . Depending on the consid-

ered situation, we numerically integrated either eqs. (8)-
(10) (set 1) or eqs. (11), (12) (set 2), in dimensionless
forms, using a standard fourth-order Runge-Kutta algo-
rithm with a variable step size and error control [54, 55].

Results of integrations will be displayed hereafter for dif-
ferent k values.

3 Results

We will first consider a collimated laser beam, as in [11,12],
and present additional results under this assumption. We
shall next address the case of a focused beam, which no
longer makes the system z-invariant, as aforementioned.

3.1 Collimated beam

Unless otherwise specified, we assume the ellipsoid to be
in the contact configuration defined in subsect. 2.2 (see
also fig. 1c). As aforesaid, this situation is not restrictive
as it does not change the results qualitatively.

Previous work showed that integration of eqs. (11),
(12) lead to a sub-critical Hopf bifurcation between static
and oscillating states above a well-defined kC value [11,12].
The simulation successfully reproduces the basic experi-
mental trends for it shows that short ellipsoids (k < kC)
are stably trapped on the beam axis in a vertical posi-
tion while longer ones (k > kC) permanently oscillate in
a periodic manner. In the former case, the origin (0, 0) at-
tracts all trajectories and is the only stable attractor in the
computed two-dimensional dissipative phase space (x, θ).
Depending on k, it may either consist of a node or a focus
(case of damped oscillations). For k > kC , two attractors
coexist: the aforementioned point attractor at the origin
and a limit cycle located away from it. For small transla-
tional or rotational excursions of the ellipsoid, the origin
is still a stable equilibrium point whereas for large initial
shift or tilt, the ellipsoid falls into the catchment region of
the limit cycle and all phase trajectories converge towards
it [11,12]. The computed coexistence of attractors departs
from the super-critical character of the experimental bifur-
cation but, given its simplicity, the simulation nevertheless
captures the main trend.

Why does the ellipsoid oscillate? Obviously k is one of
the key variables to play with, and furthermore, needless
to say that the forces and torques exerted on the particle
must depend on k. This is indeed illustrated by the color-
coded contour graphs of fig. 2 where Fx and Γy have been
plotted in the (x, θ)-plane for various k values. Figure 2
shows how the shape and location of regions with posi-
tive or negative Fx (fig. 2a) and Γy (fig. 2b) drastically
evolve with k. Thus, the onset of oscillations at kC ap-
pears to be linked to a peculiar structure of the forces and
torques. As a striking trend, we note that when k is in-
creased, the force does not vary much in amplitude while
the torque strongly increases (see the color charts on the
right of each panel). A fine inspection reveals that these
maps do not differ much at threshold (kC

∼= 4.085) and
just below it (k = 4); the main difference rather lies in
the torque value, which is a bit higher at kC . Hence, the
torque amplitude seems to be the key parameter driving
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Fig. 2. Evolution of the computed force Fx (a) and torque Γy (b) maps as a function of k (beam radius ω0 = 1.3 μm, S
polarization mode, collimated beam).

Fig. 3. Evolution of the computed force Fx (a) and torque Γy (b) maps as a function of beam radius ω0 (k = 4.1, S polarization
mode, collimated beam). Only for ω0 = 1.3 μm do the displayed force and torque maps lead to sustained oscillations. The
obtained limit cycle (in white for Fx and black for Γy) has been superimposed on the maps. The arrows indicate a clockwise
cyclic motion while the digits refer to particular situations (see text for details).
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Fig. 4. Limit cycle area, A∗
cycle, force F ∗

x and torque Γ ∗
y as

a function of the ellipsoid aspect ratio k (case of a collimated
beam, S polarisation mode, beam waist w0 = 1.3 μm). The
asterisks refer to dimensionless quantities; lines are just guides
to the eyes (see text for details).

the bifurcation. This is further supported by a simple de-
scriptive multipolar model of the force and torque maps,
as shown in [10].

Figure 3 reveals that the structure of these maps also
depends on the beam radius ω0. For a given k > kC , the
larger ω0, the weaker the forces and torques exerted on the
particle. In turn, the dynamical response of the ellipsoid
is perturbed in such a way that sustained oscillations may
disappear (central and right panels in fig. 3). To recover
the limit cycle, for instance for ω0 = 2.6μm, one has to in-
crease the aspect ratio up to ≈ 4.2 (recall that kC

∼= 4.085
for ω0 = 1.3μm), so that the torque reaches a high enough
value again whereas the force remains about the same.
More generally, we found that the larger ω0, the higher
kC . This result confirms once again the major role of the
torque in controlling the bifurcation towards the periodic
attractor. It is illustrated more quantitatively in the graph
of fig. 4, which shows the variations of the ratio ρ = Γ ∗

y /F ∗
x

(the asterisk refers to dimensionless quantities) as a func-
tion of the ellipsoid aspect ratio k. Γ ∗

y (respectively F ∗
x )

is the maximum torque (respectively maximum force) en-
countered in the force-torque map for a given k. We see
that ρ (blue symbols) grows steadily and monotonously
with k, although it seems to level out a bit for k > 4.5.
As supplementary information, the limit cycle area, A∗

cycle

(black symbols), which could play the role of an order pa-
rameter by analogy to phase transitions, is also plotted in
fig. 4. The cycle area seems to jump discontinuously from
0 to a finite value at kC , indicating that the bifurcation is
first order (sub-critical), as stated previously.

The above results undoubtedly show that the force and
torque maps, computed as a function of both k and ω0,
are of primary importance to understand the origin of sus-
tained oscillations. Although we do not know the precise
analytic form of the functions Fx(x, θ) and Γy(x, θ), the
oscillations must arise from a nonlinear intertwining of
these functions, which cannot be simply unveiled using
handwaving arguments. For illustrative purposes, it may

Fig. 5. Binary force (a) and torque (b) maps derived from
fig. 3 (left part) where only the signs of Fx and Γy have been
kept (i.e. +1 or −1). These maps better illustrate the regions
where Fx and Γy change in sign. As in fig. 3, the limit cycle
has been superimposed along with the same digits (see text for
details).

be useful to superimpose the computed limit cycle with
the corresponding force and torque maps, as shown in the
left panel of fig. 3. The arrows indicate a clockwise cyclic
motion whereas the digits 1, 2, 3, etc., marked along the
cycle, represent different positions and orientations of the
particle that we shall now briefly comment. In general, for
k > kC , sliding and/or tilting initially the particle in the
positive quadrant (x, θ > 0, point 1) results in the parti-
cle being expelled out of the beam because Fx > 0, i.e.
the force is not restoring. The particle reaches a region
where the torque is positive (point 2), making it rotate
in a clockwise manner (with our convention). θ decreases
and becomes negative. The particle now lies in a region
(x > 0, θ < 0) where the force has changed in sign and
is restoring (Fx < 0, point 3). The particle is therefore
brought back in the direction of the beam axis but the
torque also changes in sign at point 4 (Γy < 0). Hence, x
decreases while θ increases until the particle gets to point
5 where the force changes in sign again (Fx > 0). The
particle is now pulled towards the x > 0 area, still with
an increasing θ, till it reaches point 6 where the torque
becomes positive. Then θ starts to decrease and the par-
ticle is driven back towards the positive quadrant where
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Fig. 6. (a) Computed period of the oscillations T (normal-
ized by t′) as a function of the aspect ratio k (with k > kC)
for the two polarization modes S and P (see text). (b) Evo-
lution of the shape and size of the limit cycles as a function
of the polarization mode. The grey dot indicates the starting
conditions.

it started. This simple description gives an idea of how Fx

and Γy couple in a subtle and peculiar way to produce per-
manent oscillations. But the general situation is actually
more complicated since a variety of different maps can en-
gender limit cycles, as we will see in the next section with
focused beams.

It is instructive to re-plot the contour plots of fig. 3a,b
(left part) using a binary color coding of the forces and
torques where only the signs are kept (i.e. +1 or −1). In
the resulting maps (see fig. 5), the regions where the force
and torque change in sign are better resolved and appear
as well-defined boundaries between different domains. As
in fig. 3, the limit cycle has been superimposed and sign
changes along the cycle can be easily spotted through a
direct reading of crossed borders. We see that the force
changes in sign at positions 3 and 5 while the torque does
so at positions 4 and 6, mainly. As described above, these
sign changes are important to understand the origin of
limit cycles. We will come back to this point in the dis-
cussion part.

The computed aspect ratio threshold kC slightly de-
pends on the beam polarization mode with kC(S) ∼= 4.085
and kC(P) ∼= 4.275 (with ω0 = 1.3μm). At threshold, the

period of the oscillations, T , is smaller in the P mode
(≈ 3.2 s) than in the S one (≈ 8.3 s) and both increase
significantly —and even seem to diverge with k— as il-
lustrated in fig. 6a. The increase is especially spectacular
for the S mode, where T reaches values on the order of
∼ 104 s, i.e. the system dynamics slows down dramati-
cally. Correspondingly, the size of the associated limit cy-
cles in the (x, θ) phase space increases with k for both po-
larization modes. However, due to slightly different force
and torque values, the limit cycle in the P mode is al-
ways smaller than that in the S mode for a given k,
as displayed in fig. 6b. In the latter case, the ellipsoid
performs greater translational and rotational excursions
from the beam axis and thus explores more remote areas
where the forces and torques reach rather small values. It
therefore takes more time to go around the cycle in this
case. This might explain the different dynamics of the two
modes.

Experimentally, the oscillating ellipsoids also per-
form motions well outside the beam axis but the beam
polarization, be it linear in the S or P mode, or circular,
does not influence the oscillation frequency, as already re-
ported [11,12]. Furthermore, the slowing down of the par-
ticle dynamics upon increasing k was not clearly evidenced
in the experiments. We shortly comment on this point in
the discussion part.

3.2 Focused beam

We shall now consider a focused laser beam with the
aim of simulating the spreading of the actual laser beam
due to diffraction. As aforesaid, the beam waist in the
experiments is indeed small enough (ω0 ≈ 1.3μm) for
diffraction effects to occur on the scale of particles lengths
(≈ 15μm). We then wish to investigate how the conver-
gence/divergence of the incoming laser beam alters the
ellipsoid dynamical state. One of the main consequences
is that the system is no longer z-invariant and the altitude
of the ellipsoid center of mass, z, with respect to the beam
waist plane (fixed at z = 0), will now matter.

We conducted numerous dynamical calculations (inte-
gration of eqs. (11), (12)) as a function of both k and z.
As before, the particle is again supposedly in contact to
the top surface of the sample cell, and therefore only two
degrees of freedom are considered (x and θ). Figure 7 sum-
marizes the results in the form of state diagrams in the
(k, z)-plane. The beam divergence was set to 5.4◦ which
is equivalent, in the far field, to that of a Gaussian beam
with a beam waist equal to 1.3μm. z > 0 (z < 0) means
that the particle center of mass is located above (below)
the z = 0 plane, respectively. In the former (latter) case, a
diverging (converging) beam strikes the ellipsoid, respec-
tively (see fig. 7a).

As a generalization of the conclusion drawn for colli-
mated beams, we find that, for a given beam angle, sus-
tained oscillations (blue points, fig. 7b,c) also appear only
above a well-defined aspect ratio (here, kC ≈ 3.65 for
z = 0 and S polarization mode). But, as expected, the
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Fig. 7. (a) Schematic of our model focused beam (see sub-
sect. 2.1 for details). (b), (c) State diagrams in the (k, z)-plane
displaying the static (white circles) and dynamic (blue circles)
stationary states of the ellipsoid for two different values of θD

(5.4◦ in (b) and 10.023◦ in (c)). The beam converges (diverges)
for z < 0 (for z > 0), respectively. (S polarization mode).

ellipsoid dynamical state greatly depends on z, and fur-
thermore, the z ⇔ −z symmetry is broken since more
oscillating states occur in the z < 0 region than in the
z > 0 one. The latter fact is actually not too surprising
since the rays of a converging beam will strike the par-
ticle surface at different locations than the rays of a di-
verging beam, thereby imparting different RP forces and
torques to the particle and leading to different dynamics as
well. Otherwise stated, z < 0 and z > 0 are qualitatively
different situations, because they correspond to opposite
signs in wave curvature with an actual laser beam. The
greater |z|, the slower the particle dynamics because the
particle is no longer exposed to the beam high intensity
areas. For k = 4.25 and z = +80μm, the particle even
stops oscillating and reaches a static equilibrium at the
(x = 0, θ = 0) point in a vertical position. This is remi-
nescent of the experimental observation mentioned in [10]
where the oscillations are “killed” at large |z|, i.e. when
the beam width becomes larger than, or comparable to,
the ellipsoid (large) size. However, the observed horizontal
flipping (see fig. 16 in [10]) is not seen in the calculations
mainly because of the small tilt angle approximation used
throughout (see eqs. (11), (12)).

Increasing the value of θD leads to the diagram exhib-
ited in fig. 7c. Much fewer oscillating states occur in that
case and most of them are located in the z < 0 region, i.e.
with the ellipsoid located upstream the beam focus. This
result would suggest that the use of tightly focused beams
may help get rid of the oscillations although it could not
be checked experimentally yet.

Depending on |z| and k (with k > kC), the origin (0, 0)
may be either a stable point attractor for small excursions
of the ellipsoid, or conversely, an unstable one. In the lat-
ter situation, the particle is rejected from the beam center
and either joins an outside limit cycle or simply drifts
away from the beam axis without oscillating, in slow mo-
tion as the forces and torques get smaller and smaller.
Occasionally though, two limit cycles show up: a small
one encircling the origin in close proximity, and a big-
ger one located further away from it, as shown in fig. 8a.
The two periodic attractors coexist and the ellipsoid bifur-
cates between them depending on the initial conditions.
Figures 8b,c display the corresponding force and torque
maps for that particular example. Note that the main fea-
tures of these maps differ somewhat from those outlined
in the case of a collimated beam (figs. 2, 3): the regions
where the forces and torques change in sign differ and
the locations where Fx and Γy are the most intense have
evolved as well. This is not too surprising since the beam
characteristics are not the same but, more importantly,
it shows that different force and torque landscapes may
lead to limit cycles and that there is not a unique one-to-
one correlation between them. A systematic computation
of the force and torque maps for all the points plotted
in fig. 7 further supports this conclusion. Additional im-
portant comments about force and torque maps will be
presented in the discussion part.

We shall now briefly mention the case of an ellipsoid
put away from any boundary and no longer constrained
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Fig. 8. (a) Coexistence of two limit cycles in phase space for
z = −14.119 μm. Two trajectories (black and red curves) con-
verge towards the larger limit cycle whereas the blue trajectory
ends up on the smaller one. (b) and (c) show the correspond-
ing contour plots for the force Fx and torque Γy, respectively
(θD = 5.4◦, k = 4.25).

Fig. 9. Typical limit cycle obtained in a three-dimensional
phase space after integration of eqs. (8), (9), (10). The laser
beam propagates in the z-direction and the starting coordi-
nates of the ellipsoid were (x0/R = 0, z0/R ≈ −1.2, θ0 = 10◦)
(θD = 5.4◦, k = 3.65). Inset graph: Time evolution of the el-
lipsoid’s altitude. The latter oscillates with an amplitude of
about 0.2.

to be in contact to a solid wall. The buoyant weight of the
particle is therefore balanced by the vertical component of
the RP force and eqs. (8), (9), (10) are the relevant equa-
tions to be integrated to access the particle dynamics, still
in the small tilt angle approximation. The particle can now
move up and down in the z-direction. Dealing here with
three degrees of freedom, x, z and θ, irregular or chaotic
dynamics could be expected in addition to the previously
encountered periodic motions in a two-dimensional phase
space [56,57]. However, as far as dynamic stationary states
are concerned, only limit cycles could be evidenced so far
upon testing a few starting conditions and different aspect
ratios. Figure 9 exhibits a typical limit cycle obtained in
the three-dimensional phase space (x, z, θ). Starting be-
low the z = 0 plane, the ellipsoid is first pushed upwards
whilst performing both translations and rotations. It then
stabilizes in the z > 0 region where it oscillates in a peri-
odic manner. The particle not only performs oscillations
in x and θ but also in z as shown in the inset plot; how-
ever, the amplitude of the oscillations, of about 1μm, is
too small to be clearly visible on the 3d trajectory. Al-
though appealing, we should however consider the above
result with some care since the substantial angular excur-
sions of the ellipsoid (θmax ≈ 50◦, see fig. 9) largely break
the small tilt angle approximation we used throughout up
to now. Note that θ values as large as ≈ 25◦ were already
achieved in fig. 6b. However, we did test on some examples
more general equations of motion not restricted to small
tilt angles. Although the shape of limit cycles changes a
bit, together with the values of xmax and θmax, we found
no major qualitative differences when compared to the so-
lutions derived from the approximate equations (eqs. (8),
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(9), (10) and eqs. (11), (12)). Thus, we believe that our
results are meaningful and the data displayed in fig. 9 re-
inforces the general character of the oscillations due to RP
forces, be the ellipsoid in contact to boundaries or located
away from them.

4 Two coaxial beams

In this last section, we want to report a few results
obtained with an ellipsoid illuminated by two coaxial
counterpropagating beams. The latter configuration is a
well-known solution to build a stable 3-dimensional op-
tical trap when a long working distance is required (see,
e.g., [6, 58–60]). Our motivation here is to see if we can
suppress the permanent oscillations for an ellipsoid with
k > kC . Achieving static equilibria of large-k ellipsoids
indeed is necessary in basic levitation experiments where
optical forces and torques are to be measured. The same
requirement more generally holds in technological applica-
tions when oscillations of optically manipulated particles
are undesirable.

Here we only consider the simplest case of two colli-
mated beams, of same power, i.e. P down

T = P up
T . Then

the forces and torques only depend on x and θ. We sup-
pose that the forces and torques from both beams simply
add incoherently (this condition is verified in experiments
with spheres [61]). The total force and torque, F (2) and
Γ (2), from both beams is obtained by linear superposi-
tion. Symmetry considerations derived from the force and
torque maps obtained with a single beam lead to

F (2)(x, θ) = F (1)(x, θ) − F (1)(−x, θ), (13)

Γ (2)(x, θ) = Γ (1)(x, θ) + Γ (1)(−x, θ), (14)

where F (1) and Γ (1) are the force and torque from the
upwards directed beam (see fig. 3). A fixed point (x0, θ0),
meaning a static configuration of the particle, then verifies

F (1)(x0, θ0) = F (1)(−x0, θ0) (15)

and
Γ (1)(x0, θ0) = −Γ (1)(−x0, θ0). (16)

Symmetry further indicates that mirror images of (x0, θ0)
through x and θ axes are fixed points too, i.e. we obtain
a quadruplet of fixed points: (±x0,±θ0).

The 2-beam simulation was carried out for an ellip-
soid with k = 4.1, which is slightly above the aspect ra-
tio threshold for oscillations in the one-beam levitation
scheme. The results show that the particle no longer os-
cillates permanently in this case. Indeed, instead of limit
cycles, the phase portrait of fig. 10a features a saddle-
type instability at the origin with 4 stable fixed points
located away from it and symmetrically distributed, as
anticipated. Starting from diverse initial conditions, we
find that the ellipsoid eventually immobilizes onto one
of the fixed points after a few damped oscillations. The
2-beam arrangement then clearly “kills” the oscillations

seen in one-beam levitation. Note that the fixed points
are located away from the x and θ axes, meaning that
they correspond to oblique configurations: the particle is
slightly off the laser beam axis and tilted (see side sketch
in fig. 10a). The corresponding force and torque maps of
this non-trivial situation are exhibited in figs. 10b,c. One
can see that they have become quite symmetrical and com-
ply with the anticipated symmetry relations stated above
(eqs. (13), (14)).

In the previously discussed symmetrical scheme, the
power ratio of the downwards directed beam to that of
the up beam, ρ = P down

T /P up
T , was simply equal to 1. We

shortly explored the effect of varying ρ, between 0 (one-
beam scheme) and 1, still for k = 4.1. We found that
oscillations were still present at ρ = 0.1, but were absent
at ρ = 0.5. So the power ratio becomes the bifurcation
control parameter in the two-beam scheme, for given par-
ticle characteristics. This conclusion is of direct practical
interest, since ρ can be easily controlled in experiments.

5 Discussion and conclusion

In this paper, we have presented numerical calculations of
the mechanical effects of light on transparent ellipsoidal
particles. We used a simple 2-dimensional model based on
ray-optics to compute the RP forces and torques exerted
on the object as a function of position and orientation
within the laser beam. Integration of the equations of mo-
tion, written in the small tilt angle approximation and
in the Stokes limit, yields the particle dynamics that we
investigated for different ellipsoid aspect ratios. The sim-
ulations predict that, above a critical aspect ratio kC , the
ellipsoid cannot be stably trapped; the particle instead
permanently oscillates in a back-and-forth motion involv-
ing both translation and rotation in the vicinity of the
beam axis. Conversely, the particle remains stably trapped
on axis in a vertical position for k < kC . This general re-
sult holds for both collimated and focused beams and is
in excellent qualitative agreement with the experimental
observations [10, 11]. A key point is that the oscillations
can be accounted for by RP forces and torques alone,
which is a further evidence of their non-conservative char-
acter [48,62–65].

It is important to note that our simulation does not in-
clude a Langevin noise term, as it would be required if we
were to explore characteristics of the particle’s Brownian
motion. Neglecting the role of thermal fluctuations is prac-
tically justified by the fact that the present study mainly
aims at understanding experiments carried out with large
particles [10–12]. Here “large” means that ellipsoids used
in experiments [10–12] were typically a few tens of mi-
crometers in length. Brownian motion of such particles is
visible under the microscope, but is very weak compared
to the amplitudes of their cyclic motions, both in trans-
lation and rotation. It is then expectable that Brownian
noise does not play a critical role in observed cyclic tra-
jectories.
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Fig. 10. Case of an ellipsoid illuminated by two coaxial counterpropagating collimated beams with equal powers. (a) Computed
phase portrait showing a few phase trajectories converging on four-point attractors (fixed points) symmetrically located away
from the origin (see sketch at right). The blue dots indicate the starting coordinates. The maps in (b) and (c) show the
corresponding contour plots for the force Fx and torque Γy, respectively (beam radius ω0 = 1.3 μm, k = 4.1).

Most interestingly, Brownian motions of rod-like par-
ticles in single-beam gradient traps have been thoroughly
studied in a recent theoretical work by Simpson and
Hanna [62]. These authors explored the characteristics of
thermally driven fluctuations of such particles close to the
on-axis configuration (x = 0, θ = 0) so that F and Γ
can be approximated as linear functions of x and θ. They
showed that the corresponding “stiffness matrix” K was
not symmetrical, meaning that the coupling of transla-
tions to torques is not equivalent to the coupling of rota-
tions to forces. The latter property leads to cyclic motions
of the particle around the (0, 0) reference configuration.
In this context, such motions were termed “first-order”,
as they only involved the linear limit of the force-torque
field. The profound reason for the existence of such mo-
tions, as explained in [62], is the asymmetry of the K
matrix, which is due to the non-conservative character of
the optical force.

The oscillations of interest in our experiments [10] and
in the present simulations are very different in nature from
the aforementioned cyclic Brownian excursions. The dif-
ference is twofold: i) Brownian fluctuations only exist as
a consequence of a Langevin noise source, which allows

the particle to explore the characteristics of the non con-
servative force-torque field. Thermal energy is absent in
our simulation, and is likely to play a negligible role in
the experiments with large-size ellipsoids. ii) The cyclic
trajectories in our 2d model clearly lie in the non-linear
domain of the force-torque maps, meaning that they are
the consequence of the non-linear dependence of F and Γ
to x and θ.

In a simplified reading of the numerical force-torque
maps [10], meaning that we only retain the main fea-
tures of the maps, the bifurcation seen in the 2d model
turns out continuous (of super-critical Hopf type) and
happens when the (x = 0, θ = 0) configuration be-
comes linearly unstable. Due to the latter (linear) insta-
bility, the particle gets ejected from the on-axis configu-
ration. The linear approximation, in this context, soon
becomes unphysical as it should drive the particle in-
finitely far (in x, say) from the axis. In reality, particle
ejection saturates due to the non-linearities of F and Γ
in x and θ. The latter non-linearities keep the particle
at finite distance in the (x, θ)-plane. As the system is
two-dimensional, the trajectory converges to a limit cy-
cle [56,57].
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The latter analysis and conclusion hold even if fine
details of the force-torque maps are taken into account.
The main difference from the above-mentioned “simplified
reading” lies in the fine structures of the maps close to
(x = 0, θ = 0). In the simple case of a collimated beam,
and for k slightly above kC , these structures in fact do
play a role for they maintain the origin point (x = 0,
θ = 0) as a stable fixed point, in coexistence with the
limit cycle. The stability of (x = 0, θ = 0) is however
limited to a narrow domain (x/R < 0.4, θ < 10◦), outside
of which the fine structure does not significantly influence
the particle’s dynamics.

We now wish to raise an important point about the
binary maps displayed in fig. 5. On these (x, θ) maps, it is
seen that the forces and torques change in sign at different
locations, i.e. sign changes are shifted. We observed sim-
ilar shifts by analyzing a few other maps featuring limit
cycles and obtained with both a collimated and a focused
beam. In fact, it turns out that this shift is very impor-
tant to understand the origin of oscillations for we can
show that it is a necessary (but not sufficient) condition
for them to occur. A general proof of this property may
be worked out if we consider that the limit cycle resulting
from the full non-linear dynamical system, originates from
an instability obtained at the linear limit of the system of
equations.

The above valuable information allows us to state more
clearly the necessary and sufficient conditions for the oc-
currence of permanent oscillations: i) existence of a shift
in the sign changes of the force and torque fields and ii)
the torque acting on the ellipsoid must be high enough.
The latter condition is equivalent to reaching a thresh-
old for the ellipsoid aspect ratio, as we saw above (see
fig. 4). In particular, we checked that, the small limit cy-
cle evidenced nearby the origin in fig. 8a fulfils condition
i) above. It is also worth mentioning here that the pre-
vious conditions i) and ii), are consistent with the con-
clusions derived from the multipolar model worked out in
Part I [10]. In this model, the shift between the force and
torque poles, and their respective sign changes, is related
to the parameter u. It was shown that if u = 0, the con-
trol parameter of the instability, A, diverges to infinity
and, consequently, the bifurcation towards a limit cycle
does not occur. Hence, u > 0 is a necessary condition for
the oscillations to occur in this model as well.

As we saw, the way the RP forces and torques are cou-
pled may be understood from the computed F (x, θ) and
Γ (x, θ) maps whose structures greatly depend on k and
the beam radius (ω0). In particular, the torque amplitude
seems to be the driving parameter of the instability. With
a focused beam, the particle altitude z intervenes as a
third parameter in the (F, Γ ) maps. Calculated state di-
agrams in the (k, z) plane show that increasing the beam
divergence tends to minimize the appearance of oscilla-
tions, and that these only exist if the particle centre is
close enough to the beam focus. Oscillations are predicted
to preferably occur for z < 0 when the beam aperture be-
comes large. Extrapolating to single-beam optical tweez-
ers, the simulation then suggests that sustained oscilla-

tions only exist when the particle is maintained below the
laser focus. The latter condition may be met by pushing
the particle against the top interface of the sample cell,
as in [18].

While particle oscillations bear their own academic in-
terest and have potential applications as a micro-motor,
they rather come as a problem in situations where par-
ticle static equilibrium is desirable. We shortly explored
the possibility of “killing” oscillations through the use of
a couple of counterpropagating beams architecture. We
indeed verified that a downward directed beam was able
to suppress the oscillations, with the consequence of the
ellipsoidal particle lying in an oblique and slightly off-
centred configuration. This point is to be verified in forth-
coming experiments.

The 2d ray-optics model helped us understand key fea-
tures of experimentally observed particle dynamics and
was able to make some likely predictions, but it obviously
has severe limitations. These mainly stem from the ray-
optics approximation itself, which is a crude representa-
tion of a laser beam and completely ignores wave effects in
the laser-particle interaction. Moreover, restriction to di-
mension 2 obviously misses the role of out-of-plane reflec-
tions and refractions, which are unimportant with spheres
but may have a great influence with ellipsoids.

Due to these limitations, the model can only make
qualitative predictions. The value of the bifurcation pa-
rameter (e.g., k ≈ 3.6 in fig. 7) is not far from that ex-
perimentally obtained with ω0 = 1.3μm. However, the
calculated value depends on the laser polarization state,
while the latter has about no influence in experimental
records [10]. Dependence on the polarization is clearly a
weakness of the 2d representation. In experiments, oscil-
lating particles undergo 3d motions around the beam axis,
which probably mask polarization characteristics of the
beam.

Another disagreement, whose cause is less obvious, is
about the period of particle oscillations as k increases.
As can be seen in fig. 6a, calculated T values divergently
increase when k is varied between 4 and 5, while no clear-
cut trend could be inferred from the experimental mea-
surements [10]. The 2d character of our model is again
perhaps subject to questions on this issue.

In spite of the limitations inherent to ray-optics, there
is still much to learn through a generalization of the
model to three dimensions. The third dimension inter-
venes through rays that propagate out of plane, the first
step in upgrading the simulation, but also in the particle
shape itself. Indeed particles in experiments are most of-
ten not spheroids (i.e. are not cylindrically symmetrical)
but have three different axes lengths. This lack of sym-
metry may be the source of irregular dynamics, as seen
in [10].

A more general formulation of the equations of motion
in 3 dimensions, not limited to small angular excursions,
should also be worked out. Finally, it may be worth study-
ing as well the influence of thermal fluctuations on the
particle dynamics. Though Brownian noise probably has a
negligible influence on limit cycles, it may have some very
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close to the bifurcation threshold. This statement holds
for large size ellipsoids, as aforesaid. Conversely, Brownian
motion expectably has a much greater influence and may
substantially alter the dynamics of very small particles,
such as nanowires, nanotubes or other nanometer-sized
objects used in the nanotechnology industry [31].
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Appendix A. Expression of the effective
length R̃

We consider an ellipsoid such as in fig. 11. a and b are
the long and short semi-axis lengths, respectively, and k
is the aspect ratio. The particle centre is denoted C, of
coordinates (x, z) in the (O, x, z) frame.

In the Stokes regime, the equation for the torque acting
on the particle reads

Γ opC + Γ hC + Γ LC = 0, (A.1)

where Γ opC is the torque due to optical forces, Γ hC the
hydrodynamic torque, and Γ LC is the torque due to the
contact of the particle on the top surface. In the small
angle approximation

Γ LC = R̃ θ F · ẑ, with R̃ = Rk−4/3(k2 − 1), (A.2)

as written in eq. (12). We will now justify eq. (A.2).
The contact point of the ellipsoid on the top surface

is denoted A in fig. 11. We suppose that contact to the
interface has no influence on hydrodynamic dissipation.
The interface reaction is then simply a vertical force L
which balances the vertical component of the optical force:
L = −Fz ẑ (with Fz = F · ẑ). The corresponding torque is
Γ LC = CA × L.

We calculate the coordinates (XA, ZA) of A in the
(C,X,Z) frame (see fig. 11). (XA, ZA) is the solution of
the couple of equations

f(X,Z) = 0, (A.3)

∂f(X,Z)
∂x

= 0, (A.4)

Fig. 11. Geometry used for the derivation of eq. (A.2) (see
appendix A).

with

f(X,Z) =
(Z cos θ + X sin θ)2

a2

+
(−Z sin θ + X cos θ)2

b2
− 1. (A.5)

The explicit form of eq. (A.4) now reads

sin θ
(Z cos θ + X sin θ)

a2

+ cos θ
(−Z sin θ + X cos θ)

b2
= 0. (A.6)

Solving for (X,Z) in eqs. (A.5), (A.6) is straightforward.
We obtain

CA =

⎛
⎜⎝sin θ cos θ

a2 − b2√
a2 cos2 θ + b2 sin2 θ

−z

⎞
⎟⎠ . (A.7)

Since the ellipsoid has the same volume as the mother
sphere of radius R, we have R3 = ab2 = kb3. Then

CA =

⎛
⎜⎝R sin θ cos θ

k−1/3
(
k2 − 1

)
√

k2 cos2 θ + sin2 θ

−z

⎞
⎟⎠ . (A.8)

To first order in θ, eq. (A.8) yields

CA ∼=

⎛
⎝Rθk−4/3

(
k2 − 1

)

−z

⎞
⎠ , (A.9)

leading to eq. (A.2) above. Note that Γ LC = 0 for a sphere
(k = 1). In this case, A and C lie on the same vertical and
the contact force does not contribute to the torque.



Eur. Phys. J. E (2014) 37: 125 Page 15 of 15

References

1. E.F. Nichols, G.F. Hull, Phys. Rev. 13, 307 (1901).
2. P. Lebedev, Ann. Phys. 6, 433 (1901).
3. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
4. A. Ashkin et al., Opt. Lett. 11, 288 (1986).
5. A. Ashkin, Optical trapping and manipulation of neutral

particles using lasers (World Scientific, London, 2006).
6. G. Roosen, C. Imbert, Phys. Lett. A 59, 6 (1976).
7. S. Chu, Rev. Mod. Phys. 70, 685 (1998).
8. C. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998).
9. Phillips, Rev. Mod. Phys. 70, 721 (1998).

10. B.M. Mihiretie, P. Snabre, J.-C. Loudet, B. Pouligny, Eur.
Phys. J. E 37, 124 (2014).

11. B.M. Mihiretie, P. Snabre, J.-C. Loudet, B. Pouligny, EPL
100, 48005 (2012).

12. B. Mihiretie, J.-C. Loudet, B. Pouligny, J. Quantum Spec-
trosc. Radiat. Transfer 126, 61 (2013).

13. J.N. Wilking, T.G. Mason, EPL 81, 58005 (2008).
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