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Abstract. Fluids in non-equilibrium steady states exhibit long-range fluctuations which extend over the
entire system. They can be described by non-equilibrium thermodynamics and fluctuating hydrodynamics
that assume local equilibrium for the thermophysical properties as a function of space and time. The
experimental evidence for the consistency between this assumption of local equilibrium in the equations
and the non-local fluctuation phenomena observed is reviewed.

1 Introduction

Non-equilibrium thermodynamics (NET) is a powerful
tool to describe and understand the physics of systems
that are not in global equilibrium, but in which the ther-
modynamic properties depend on space and on time [1].
NET is essential for dealing with a wide range of ap-
plications and systems such as fluid physics, soft mat-
ter physics, astrophysics, statistical physics, biology, met-
allurgy and engineering [2]. NET is much more general
than equilibrium thermodynamics (ET) which describes
systems in equilibrium conditions; conditions that do not
apply to many relevant “real” cases [3].

The history of NET has recently been reviewed by Be-
deaux et al. [4]. The beginning of the formal development
of NET is commonly attributed to the work of Onsager in
1931 in which he put the earlier research on the subject
into a systematic framework [5]. A survey of the various
books and monographs on NET can also be found in [4].

The well-established equations of ET apply to systems
that are in global equilibrium. A fundamental assumption
in NET is that the equilibrium thermodynamic relations
remain valid at the local level, i.e., at any given volume
element at any time. The purpose of the present paper
is to discuss the consistency between the assumption of
local equilibrium of the NET equations and various non-
local phenomena appearing in non-equilibrium. A variety
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of non-equilibrium steady states have been considered in
the literature [6]. In this paper we shall consider fluctu-
ations in a quiescent fluid layer between two horizontal
boundaries in the presence of either a temperature gradi-
ent or a concentration gradient. A review of fluctuations
in fluid layers in the presence of a velocity gradient can be
found elsewhere [7].

This paper is organized as follows. In sect. 2 we intro-
duce the concept of fluctuating hydrodynamics for dealing
with thermal fluctuation in fluids in global equilibrium.
In sect. 3 we consider the extension to thermal fluctu-
ations in non-equilibrium states. These fluctuations are
non-local and extend over the entire system [8]. As a con-
sequence, the non-equilibrium fluctuations are affected by
gravity, considered in sect. 4, and by the finite size of the
fluid layer, considered in sect. 5. Most recently, it has been
predicted that the long-range non-equilibrium fluctuations
will induce non-equilibrium Casimir-like forces [9–13], re-
viewed in sect. 6. We summarize our conclusions in sect. 7.

2 Fluctuations in equilibrium

2.1 Fluctuating hydrodynamics

A complete description of a thermodynamic system must
include fluctuations. Fluctuations in fluids in thermody-
namic equilibrium can be described by the method of fluc-
tuating hydrodynamics originally developed by Landau
and Lifshitz [14,15] with subsequent contributions from
Fox and Uhlenbeck [16,17]. The idea is that the fluctua-
tions of the thermodynamic properties satisfy the NET
equations provided that the thermodynamic fluxes are
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supplemented with stochastic contributions accounting for
the noise resulting from molecular motions [18].

In a one-component fluid one encounters a heat mode
causing temperature fluctuations, two sound modes as-
sociated with pressure fluctuations and a viscous mode
causing velocity fluctuations [6]. In normal fluids, sound
modes are fast propagating modes while the heat mode
is a slow diffusive one. Hence, to deal with the slow diffu-
sive temperature fluctuations we may neglect any pressure
fluctuations. In linear approximation the resulting hydro-
dynamic equation for the temperature T reads

ρcp

[
∂T

∂t
+ v · ∇T

]
= −∇ · Q, (1)

where ρ is the mass density, cp the specific heat capacity at
constant pressure, v the fluid velocity, and Q the heat flux.
In fluctuating hydrodynamics, the heat flux Q is related
to the temperature gradient ∇T as

Q = −λ∇T + δQ, (2)

where λ is the thermal conductivity according to Fourier’s
law and δQ a fluctuating heat flux which is zero on aver-
age: 〈δQ〉 = 0 [6]. Equation (2) thus becomes

ρcp

[
∂T

∂t
+ v · ∇T

]
= λ∇2T −∇ · δQ. (3)

We write the temperature T and the fluid velocity v as
sums of an average temperature T0 and an average ve-
locity v0 and the fluctuating parts δT (r, t) and δv(r, t)
depending on position r and time t: T = T0 + δT (r, t) and
v = v0+δv(r, t). In equilibrium ∇T0 = 0 and v0 = 0, and
the equation for the temperature fluctuation becomes

ρcp
∂δT

∂t
= λ∇2δT −∇ · δQ. (4)

In a fluid mixture there is an additional concentration
mode. An important parameter in (binary) fluid mixtures
is the Lewis number Le = a/D, where a = λ/ρcp is the
thermal diffusivity and D the mass diffusion coefficient.
In many liquid mixtures the Lewis number is substantially
larger than unity. For Le � 1 the concentration mode and
the heat mode decouple [19] and for large Le the relevant
equation for the concentration c becomes [18]

∂c

∂t
+ v · ∇c = D∇2c − 1

ρ
∇ · δJ, (5)

where c is the mass fraction of one of the two compo-
nents and J a fluctuating mass flux [6]. Again we write
the concentration c as the sum of an average value and
a fluctuating part: c = c0 + δc(r, t). Again in equilibrium
∇c0 = 0 and v0 = 0, so that

∂δc

∂t
= D∇2δc − 1

ρ
∇ · δJ. (6)

2.2 Equilibrium correlation functions

To solve eqs. (4) and (6) for the temperature and concen-
tration fluctuations, we need the correlation functions for
the fluctuating heat flux and the fluctuating mass flux,
which are given by the fluctuation-dissipation theorem [6,
18,20]:

〈δQ∗
i (r

′, t′)·δQj(r, t)〉=2kBλT 2
0 δijδ(r′−r)δ(t′−t), (7)

〈δJ∗
i (r′, t′)·δJj(r, t)〉=2kBDT0ρχp,T δijδ(r′−r)δ(t′−t),

(8)

where kB is Boltzmann’s constant. In eq. (8) for the bi-
nary mixture χp,T = (∂c/∂μ)p,T , where μ is the difference
between the chemical potentials of the two components,
so that χp,T can be identified with the osmotic compress-
ibility. For fluids of molecules with short-range forces, the
noise correlations are short ranged so that they are rep-
resented by delta functions at hydrodynamic length and
time scales. Fluctuations are commonly studied experi-
mentally by various optical techniques as a function of
the wave number q of the fluctuations [6]. Using eq. (7)
and taking a spatial Fourier transform, one can readily
solve eq. (4) for the temperature correlation function:

〈δT ∗(q′, t)δT (q, 0)〉 =
kBT 2

0

ρcp
exp

(
−aq2t

)
(2π)3δ(q′ − q).

(9)
The temperature fluctuations are related to the fluctua-
tions δs of the entropy density as δs = (ρcp/T )δT , so that

〈δs∗(q′, t)δs(q, 0)〉=kBρcpT0 exp
(
−aq2t

)
(2π)3δ(q′ − q).

(10)
As a reminder, we are only considering here the fluctu-
ations resulting from the slow heat mode which can be
probed by Rayleigh scattering. Similarly, one obtains from
eqs. (6) and (8) for the concentration fluctuations in a bi-
nary mixture in the large Le approximation [18]:

〈δc∗(q′, t)δc(q, 0)〉= kBT0

ρ
χp,T exp

(
−Dq2t

)
(2π)3δ(q′−q).

(11)
We see that the equilibrium fluctuations are short ranged.
Hence, the intensity of equal-time fluctuations, obtained
by taking t = 0 in eqs. (10) and (11), is independent of the
wave number q. The time-correlation functions of fluctu-
ations decay exponentially with a relaxation time τ(q) =
1/aq2 for the temperature fluctuations and τ(q) = 1/Dq2

for the concentration fluctuations. Traditionally, these re-
sults for the equilibrium fluctuations are obtained by solv-
ing deterministic hydrodynamic equations with arbitrary
initial conditions [21–24]. We prefer to use the stochastic
fluctuating hydrodynamics equations, since this method
can be extended to non-equilibrium states as further dis-
cussed in sect. 3.

2.3 Critical fluctuations

At a vapour-liquid critical point in a one-component fluid
the isobaric heat capacity cp diverges. Thus the intensity
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of the fluctuations of the entropy density becomes very
large, while the intensity of the fluctuations of the tem-
perature becomes vanishingly small. Similarly, the osmotic
compressibility χp,T diverges at a critical consolute point
of a binary fluid mixture. Near a critical point the fluctua-
tions become long ranged with a correlation length ξ that
diverges at the critical point. As a consequence, the cor-
relation function, eq. (10), of the entropy density fluctua-
tions near a vapour-liquid critical point and of the correla-
tion function, eq. (11), for the concentration fluctuations
near a critical consolute point, need to be multiplied by
a scaling function g(qξ). In the so-called Ornstein-Zernike
approximation [25]

g(qξ) � 1
1 + q2ξ2

. (12)

Thus in states near a critical point, the intensity of the
fluctuations diverges at small wave numbers proportional
to q−2, leading to finite-size effects [26,27] and Casimir
pressures in confined fluid layers [28–30] near a critical
point.

While the critical fluctuations generally still decay ex-
ponentially, a hydrodynamic coupling between the fluctu-
ations of the order parameter and the viscous fluctuations
causes the transport coefficient determining the relaxation
time τ of the critical fluctuations to become dependent
on the wave number. Asymptotically close to the critical
point one finds

τ(q) =
6πηξ

kBT

1
q2Ω(qξ)

, (13)

where η is the shear viscosity and Ω(qξ) a dynamical
scaling function [31–33]. At the critical point both ξ and
η, and, hence, the relaxation time τ diverge. This phe-
nomenon is known as critical slowing-down of the fluc-
tuations. Theory also predicts deviations from exponen-
tial decay of the fluctuations extremely close the critical
point [34]. Such deviations have been observed experimen-
tally [35], but they turn out to be very small and negligible
in practice.

3 Fluctuations in non-equilibrium steady
states

3.1 Fluctuations in a temperature gradient

We consider a fluid layer bounded between two horizon-
tal plates located at z = ±L/2 in the presence of a
temperature gradient ∇T0 �= 0. Thus the temperature
to be substituted into eq. (3) now is a function of z:
T = T0 +z∇T0 +δT (r, t). When the temperature gradient
is in the z-direction opposite to the direction of gravity,
convection can be avoided so that the fluid velocity con-
tinues to be v = δv(r, t) with v0 = 0. It thus follows from
eq. (3) that the equation for the temperature, at linear
order in the fluctuations, now becomes

ρcp

[
∂δT

∂t
+ δv · ∇T0

]
= λ∇2δT −∇ · δQ. (14)

In contrast to equilibrium, the temperature gradient
causes a coupling between the temperature fluctuations
and the velocity fluctuations, the latter satisfying a lin-
earized fluctuating Navier-Stokes equation of the form [6,
36]

∂δv
∂t

= ν∇2δv +
1
ρ
∇ · δΠ, (15)

In eq. (15) ν = μ/ρ is the kinematic viscosity and δΠ a
fluctuating stress tensor whose correlation function in ac-
cordance with the fluctuation-dissipation theorem is given
by [15,18,20]

〈
δΠ∗

ij(r
′, t′) · δΠkl(r, t)

〉
=

2kBT0η(δikδjl + δilδjk)δ(r′ − r)δ(t′ − t). (16)

Now in accordance with a basic postulate of local equi-
librium in NET [1,3,37], we assume that all thermophys-
ical properties, like the isobaric specific heat capacity, the
thermal conductivity in eqs. (7) and (14), and the viscosi-
ties in eqs. (15) and (16), are taken as their equilibrium
values corresponding to the average local temperature T0

and average local density ρ = ρ0. Since the average local
temperature T0 depends on z, it follows that also all ther-
mophysical properties in principle will depend on z. While
such a dependence of the thermophysical properties on the
location in the fluid layer can be taken into account in
solving the fluctuating hydrodynamics equations [38,39],
the effect appears to be small [40,41]. Hence, in practice
we use a stronger local equilibrium assumption by identi-
fying all thermophysical properties with their local equi-
librium values corresponding to the average temperature
T0 = T0(0) and the average density ρ0 = ρ0(0).

Solving the two coupled fluctuating hydrodynamics
equations, eqs. (14) and (15), one obtains for the special
case that the wave vector q of the fluctuations is perpen-
dicular to the temperature gradient

〈δT ∗(q′, t)δT (q, 0)〉 =
kBT0

2

ρcp

[
(1 + AT ) exp

(
−aq2t

)

− Aυ exp
(
−νq2t

)]
(2π)3δ(q′ − q), (17)

with

AT =
cp

T0(ν2 − a2)
ν

a

(∇T0)2

q4
,

Aν =
cp

T0(ν2 − a2)
(∇T0)2

q4
. (18)

It follows that the total intensity of the non-equilibrium
fluctuations is given by

〈δT ∗ (q′, 0) δT (q, 0)〉 =

kBT0
2

ρcp

[
1 +

cp

T0(ν + a)a
(∇T0)2

q4

]
(2π)3δ(q′ − q). (19)

These expressions were first obtained by Kirkpatrick et
al. from basic non-equilibrium statistical mechanics [42].
Shortly thereafter, Ronis and Procaccia [43] pointed out
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that this result can also be obtained by extending fluctu-
ating hydrodynamics to non-equilibrium, a method sub-
sequently implemented by Law and Sengers [44]. The
existence of these non-equilibrium temperature and vis-
cosity fluctuations, proportional to (∇T0)2 and propor-
tional to q−4, with amplitudes AT and Aν exactly as
given by eq. (18) without any adjustable parameters,
was first demonstrated experimentally by Sengers and co-
workers [40,45].

This result has a number of important implications:
1) The presence of a temperature gradient induces a

coupling between heat mode and viscous mode that is ab-
sent in equilibrium except when close to a critical point.

2) The amplitudes of the non-equilibrium temperature
and viscous fluctuations differ by a factor equal to the
Prandtl number Pr = ν/a, which is typically of the order
of 10 in liquids and liquid mixtures.

3) The intensity of the non-equilibrium fluctuations is
proportional to the square of the temperature gradient.
This is a rigorous result and not the result of a perturba-
tion expansion in terms of ∇T0 [46].

4) For small wave numbers the intensity of the non-
equilibrium fluctuations diverges as q−4. First, it means
that the intensities of the non-equilibrium fluctuations be-
come much larger than those corresponding to local equi-
librium. Second, the non-equilibrium fluctuations are long
range, and not local but extending over the entire size of
the system [47].

5) While the intensity of critical fluctuations diverges
at small wave numbers q as q−2 in accordance with
eq. (12), the intensity of the non-equilibrium fluctuations
diverges as q−4. Hence, the non-equilibrium fluctuations
are much more dramatic than critical fluctuations. More-
over, the presence of such pronounced non-local long-
ranged fluctuations will be ubiquitous whenever a gradient
is present in fluids, and not restricted to the close vicinity
of a critical point.

6) The agreement with theory and experiment with-
out adjustable parameters [40,45] confirms the validity
of non-equilibrium fluctuating hydrodynamics with coeffi-
cients that satisfy local equilibrium even though in reality
dramatic non-local fluctuations appear.

3.2 Fluctuations in a concentration gradient

Next we consider binary fluid mixtures bounded between
two horizontal plates located at z = ±L/2 in the presence
of a concentration gradient ∇c0 �= 0. Thus the concen-
tration to be substituted into eq. (5) now is a function
of z: c = c0 + z∇c0 + δc(r, t). Again we assume that the
system is far away from any convective instability, so that
the fluid velocity is again v = δv(r, t) with v0 = 0. It thus
follows from eq. (5) that the fluctuating equation for the
concentration becomes

∂δc

∂t
+ δv · ∇c0 = D∇2δc − 1

ρ
∇ · δJ. (20)

We see that the concentration gradient induces a coupling
between concentration fluctuations and velocity fluctua-

tions, the latter being given again by eq. (15). Again we
use the assumption that the thermophysical properties in
eqs. (8), (15) and (20) are given by their local equilibrium
values. Solving the two coupled fluctuating hydrodynam-
ics equations, eqs. (15) and (20), one obtains again for the
case that the wave vector q of the fluctuations is perpen-
dicular to the concentration gradient

〈δc∗(q′, t)δc(q, 0)〉 =
kBT0

ρ
χp,T (1 + Ac) exp

(
−Dq2t

)
(2π)3δ(q′ − q) (21)

with

Ac =
1

νD
χ−1

p,T

(∇c0)2

q4
. (22)

The complete expression for the non-equilibrium concen-
tration fluctuation in a binary fluid mixture was first de-
rived by Law and Nieuwoudt [48], who considered non-
equilibrium concentration fluctuations, non-equilibrium
temperature fluctuations, and non-equilibrium velocity
fluctuations which, in general, will be present in a mix-
ture [48–50]. Equations (21) and (22) represent a simplifi-
cation for Le � 1, verified experimentally by Li et al. [51].

A convenient experimental procedure for establishing
a concentration gradient ∇c0 is applying a temperature
gradient ∇T0 to the mixture, thus inducing a concentra-
tion gradient through the Soret effect:

∇c0 = −c0 (1 − c0) ST∇T0, (23)

where ST is the appropriate Soret coefficient [49–52]. Just
as for one-component fluids, we consider here only steady
non-equilibrium states in which convection is absent. The
conditions for which both the concentration gradient and
the temperature gradient are stabilizing have been speci-
fied in the literature [53–55].

Strictly speaking, eq. (21) is valid for a liquid mix-
ture in a steady non-equilibrium state. Several investiga-
tors have also studied concentration fluctuations in the
presence of transient concentration gradients in isother-
mal liquid mixtures induced by free diffusion. These ex-
periments have also confirmed that the intensity of the
non-equilibrium concentration fluctuations at any given
time vary as q−4 [56–58].

The implications of this result are similar to those men-
tioned earlier for the non-equilibrium concentration fluc-
tuations:

1) The presence of a concentration gradient induces a
coupling between mass diffusion mode and viscous mode
that is absent in equilibrium except when close to a critical
consolute point.

2) In general non-equilibrium concentration, temper-
ature, and velocity fluctuations will be present in a mix-
ture. But for Le � 1 the non-equilibrium concentration
fluctuations will be dominant.

3) The intensity of the non-equilibrium fluctuations is
proportional to (∇c0)2 and, hence, to (∇T0)2 when the
concentration gradient is caused by the Soret effect.

4) For small wave numbers the intensity of the
non-equilibrium concentration fluctuations also diverges
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as q−4. As a consequence, also the intensities of the
non-equilibrium concentration fluctuations become much
larger than those corresponding to local equilibrium. The
non-equilibrium concentration fluctuations are long range,
and not local but extending over the entire size of the sys-
tem.

5) The divergence of the intensity of the non-
equilibrium concentration fluctuations as q−4 is much
stronger than the divergence of critical concentration fluc-
tuations as q−2 near a consolute point.

6) The agreement with theory and experiment without
adjustable parameters confirms again the validity of non-
equilibrium fluctuating hydrodynamics for mixtures with
coefficients that satisfy local equilibrium even though non-
local fluctuations are present.

4 Gravity effects

4.1 Gravity effects on the intensity of non-equilibrium
fluctuations

The rapid increase of the intensity of the non-equilibrium
(NE) fluctuations as q−4 cannot go on indefinitely. The
first physical effects affecting NE fluctuations at very small
wave numbers discussed in the literature are those result-
ing from gravity (buoyancy). The effect of bouyancy can
be incorporated by adding in the linearized fluctuating
Navier-Stokes equation, eq. (15), a coupling −gαδT with
the temperature fluctuations; while for binary mixtures
a second coupling gβδc with concentration fluctuations
must also be considered. In these expressions, g is the mag-
nitude of the gravitational force g, α = −ρ−1(∂ρ/∂T )p the
thermal expansion coefficient, and β = ρ−1(∂ρ/∂c)p,T the
solutal expansion coefficient [6,59,60].

The evaluation of gravity effects on the NE fluctua-
tions in single-component fluids is more easily performed
in the Pr � 1 limit, in which case the contribution from
the viscous mode in eq. (17) can be neglected. One then
finds that eq. (19) for the intensity of the non-equilibrium
temperature fluctuations needs to be replaced by

〈δT ∗ (q′, 0) δT (q, 0)〉 =

kBT0
2

ρcp

[
1 +

cp

T0νa

(∇T0)2

(q4 + q4
RO,T )

]
(2π)3δ(q′ − q), (24)

where qRO,T is a “rollover” wave number such that

q4
RO,T =

α|g · ∇T0|
νa

. (25)

When g = 0 (so that q4
RO,T = 0), eq. (24) reduces for

ν/a � 1 to eq. (19) earlier obtained in the absence of
buoyancy. We further mention that, for consistency with
the Boussinesq approximation, we have also neglected in
eq. (24) the adiabatic temperature gradient (αT0/cp)g as
compared to the imposed temperature gradient ∇T0 [6,
60]. For later use we also note that eq. (24) is only valid
for temperature gradients antiparallel to gravity (heating

Fig. 1. Intensity S(q) of the non-equilibrium concentration
fluctuations during free diffusion in an aqueous solution of urea,
relative to the intensity Seq of the local equilibrium concentra-
tion fluctuations, from a reanalysis of data earlier reported
in [63].

from above, or negative Rayleigh number). When the RHS
of eq. (25) is negative there appears an unphysical diver-
gence at finite q for the intensity of NE temperature fluctu-
ations that can only be removed by including confinement
effects [61,62].

In a similar way, adopting large values for both the
Prandtl and the Lewis number, one obtains for the inten-
sity of the non-equilibrium concentration fluctuations in a
binary mixture [6,60]:

〈δc∗ (q′, 0) δc(q, 0)〉 =

kBT0

ρ
χp,T

[
1 +

1
νD

χ−1
p,T (∇c0)2

(q4 + q4
RO,c)

]
(2π)3δ(q′ − q), (26)

with

q4
RO,c =

β|g · ∇c0|
νD

. (27)

Hence, both for temperature or concentration fluctua-
tions, if q � qRO the intensity of the non-equilibrium
fluctuations continues to vary as q−4, but if q � qRO the
intensity will approximate a constant value, independent
of q.

The fact that buoyancy saturates the increase of the
intensity of the non-equilibrium fluctuations was originally
predicted by Segrè et al. [59] and first demonstrated ex-
perimentally by Vailati and Giglio [52,56]. As an example
we show in fig. 1 the non-equilibrium enhancement of the
intensity of the NE concentration fluctuations observed
during free diffusion of an aqueous solution of urea [63].
At large wave numbers the intensity S(q) of the concentra-
tion fluctuations varies as q−4, but at smaller wave num-
bers the enhancement saturates at a finite but very large
value, 106 times the intensity Seq of equilibrium fluctua-
tions at the average temperature, just as originally pre-
dicted by Segrè et al. [59] and earlier observed by Vailati
and Giglio [52,56].

The effect of gravity on the non-equilibrium fluctu-
ations has been dramatically illustrated by comparing
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Fig. 2. Intensity S(q) of the non-equilibrium concentra-
tion fluctuations in a solution of polystyrene in toluene as
a function of qL induced by a temperature gradient ∇T0 =
13.25 K · mm−1, relative to the intensity Seq of the local equi-
librium concentration fluctuations, from an analysis of data
obtained at microgravity [64–66]. The solid red curve repre-
sents the magnitude of the structure factor to be expected on
earth at the same value of the temperature gradient. For g = 0
the intensity of fluctuations is only affected by confinement,
see sect. 5.1, in particular eq. (30).

the intensity of the non-equilibrium fluctuations on earth
with measurements of the same fluctuations at low grav-
ity [64–66], as shown in fig. 2 for a solution of polystyrene
in toluene. For large wave numbers the intensity of the
non-equilibrium concentration fluctuations again varies as
q−4 [51]. For small wave numbers the intensity saturates
at even much higher values in microgravity than on earth,
again as predicted by theory [59]. This huge enhancement
evidences the importance of performing crucial experi-
ments in micro-gravity conditions as is the case of the fu-
ture project NEUF-DIX [67]. As we shall discuss in sect. 5,
the intensity of the NE fluctuations is also restricted at
smaller wave numbers by finite-size effects. This is the
reason that even at microgravity the intensity of the NE
fluctuations cannot diverge at any wave number.

4.2 Gravity effects on the dynamics of non-equilibrium
fluctuations

The effects of buoyancy on the dynamics of NE fluctu-
ations have been studied in detail only for concentration
fluctuations in binary mixtures. The autocorrelation func-
tion of these NE concentration fluctuations, again in the
same approximations, Pr � 1 and Le � 1, adopted in
the previous section, can be written as [68]

〈δc∗(q′, t)δc(q, 0)〉 =
kBT0

ρ
χp,T

(
1 +

χ−1
p,T

νD

(∇c0)2

(q4 + q4
RO,c)

)

× exp (−t/τc) (2π)3δ(q′ − q) (28)

with
τc =

1

Dq2(1 +
q4
RO,c

q4 )
. (29)

Fig. 3. Decay times τ(q) of non-equilibrium concentration fluc-
tuations in an isothermal solution of colloidal particles and
water diffusing against pure water as a function of q. Different
symbols are for different times from the beginning of the exper-
iment when a concentration gradient is created; time increases
from bottom to top of the graph. The experiments confirm the
crossover from a q−2 behaviour for large q to a q2 behavior for
small q in agreement with eq. (29). Figure reproducing data
already published in [69].

Equation (26) for the intensity of the fluctuations is re-
covered from eq. (28) by setting t = 0. We also note that
in the absence of gravity (q4

RO,c = 0), eqs. (28) and (29)
reduce to eqs. (21) and (22). The effect of gravity on the
dynamics is contained in eq. (29) for the decay time. Fluc-
tuations with wave numbers larger than qRO,c behave dif-
fusively with a time constant τc = 1/Dq2, while fluctua-
tions with wave numbers smaller than qRO,c decay faster
with a time constant τc = q2/Dq4

RO,c. It is interesting to
note that gravity also affects the dynamics of “equilib-
rium” fluctuations (the term associated with unity inside
the brackets in eq. (28)), when a concentration gradient is
present [59].

The first direct measurements of the effect of grav-
ity on the dynamics of NE fluctuations were obtained by
Croccolo et al., who developed an algorithm enabling them
to obtain dynamic measurements with a Shadowgraph or
Schlieren optical setup [57,63,69]. Figure 3 shows the mea-
sured time decays for concentration fluctuations during
free diffusion of a mixture of colloidal particles and water
diffusing against pure water [69]. The typical “bell” shape
can be noticed with the presence of a clear maximum for
the time decay corresponding to the position of the qRO,c,
a quantity that decreases with time as the concentration
gradient slowly decreases.

5 Finite-size effects in confined fluid layers

5.1 Finite-size effects on the intensity of
non-equilibrium fluctuations

All equations for the NE fluctuations presented thus far
are only valid in the bulk of the fluid, i.e., far away from
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the boundaries. Because of the very long-range nature of
the NE fluctuations, boundary conditions actually affect
both the statics and the dynamics of non-equilibrium fluc-
tuations. For this purpose one needs to obtain a solution
of the fluctuating hydrodynamics subject to appropriate
boundary conditions for the temperature or concentra-
tion fluctuations and for the transverse velocity fluctu-
ations [61,62,70–72]. For a fluid layer between two imper-
meable thermal conducting plates, the temperature fluctu-
ations must vanish at the bounding plates, while the verti-
cal derivative of the concentration fluctuations must van-
ish at the plates. For the velocity fluctuations two types
of boundary conditions are commonly considered: stress-
free or no-slip boundary conditions [73]. Stress-free bound-
ary conditions are unrealistic but they are mathematically
convenient and allow for exact analytical solutions [61].
No-slip boundary conditions are realistic but exact results
are generally not possible and often one then obtains so-
lutions in terms of Galerkin approximations [6,62,70].

As a summary of the results we mention first that, as
expected, typically the impact of the confinement is lim-
ited to wave numbers in the range qL ≤ 1. Due to the per-
fectly thermal conducting walls boundary condition, the
intensity of the NE temperature fluctuations crosses over
from the non-zero q-independent saturated NE enhance-
ment corresponding to the small-q limit of eq. (24) to a q2

dependence for even smaller q, thus, approaching zero in
the q → 0 limit. The boundary conditions cause the non-
equilibrium fluctuations to depend on the Rayleigh num-
ber Ra = −αL4g · ∇T0/νa. In liquid layers heated from
above (corresponding to negative Rayleigh numbers), the
intensity of the NE temperature fluctuations as a func-
tion of q presents three different regimes. At large q, the
q−4 dependence of eq. (19). At intermediate q, a very flat
maximum induced by buoyancy, as described by eq. (24).
Finally, at extremely small q, the intensity of the temper-
ature fluctuations decreases as q2 when q → 0 [61,62].

Most importantly, the introduction of boundary con-
ditions in the presence of gravity, yields also a perfectly
valid convergent result for a range of positive Rayleigh
numbers (i.e., when heated from below), up to a limit
that equals the well-known critical Rayleigh number for
the appearance of convection in the system, as obtained
from deterministic fluid dynamics. In this case (positive
Ra), between the large-q behavior as q−4 and the small-q
behavior as q2, a prominent maximum in the intensity of
NE fluctuations develops, centered at a non-zero finite qm

whose height increases up to the critical Rayleigh num-
ber, where the fluctuations become macroscopic leading
to convection patterns [6,62].

The impact of confinement on the spatial spectrum
of NE fluctuations has been beautifully illustrated by the
results of the GRADFLEX space experiment, performed
in microgravity conditions [64–66,74,75]. As an example
of the experimental results, we show in fig. 4 a compari-
son between the intensity of the NE temperature fluctua-
tions in ground experiments (with gravity) and in experi-
ments in space (microgravity) [75]. The experiments show
the q2-dependence due to confinement most clearly in mi-
crogravity, while the ground experiments were performed

Fig. 4. Log-log plot of the NE enhancement of the temper-
ature fluctuations in liquid CS2 as a function of qL as mea-
sured by Takacs et al. [75]. The symbols indicate the exper-
imental data obtained from the GRADFLEX instrument at
∇T0 = 17.9 K · cm−1 (squares), at ∇T0 = 34.5 K · cm−1 (tri-
angles), and at ∇T0 = 101 K · cm−1 (circles), in microgravity
(upper curves) and on earth (lower curves). The curves repre-
sent the theoretical prediction from fluctuating hydrodynam-
ics [62]. Figure reprinted from [75] with permission.

at such large and negative Rayleigh numbers so that the
wave numbers at which the q2-dependence should be ev-
ident were outside the experimental range of wave num-
bers. However, at microgravity conditions the maximum
in the NE fluctuations as a crossover from q−4 to q2 is
clearly apparent in the experimental results. We note that
experimental evidence for confinement effects on the NE
fluctuations was earlier observed by Wu et al. in super-
critical SF6 near but below the convection threshold [76].

Regarding confinement effects on the intensity of NE
concentration fluctuations, we first mention that an exact
analytical solution for realistic boundary conditions has
recently been obtained in the simpler case of the absence
of gravity. For NE concentration fluctuations in the ab-
sence of gravity but with incorporation of the effect of
confinement, the spatio-temporal correlation function is
given by [72]

〈δc∗(q′, t)δc(q, 0)〉NE =
kBT0

ρ

1
νD

(∇c0)2

q4
[1 + Bc(q)]

× exp (−t/τc) (2π)3δ(q′ − q), (30)

with

Bc(q) =
4(1 − cosh(qL))

qL(qL + sinh(qL))
(31)

and
τc =

1
Dq2

, (32)

replacing eqs. (28) and (29) (at g = 0 or q4
RO,c = 0). For

simplicity, we have written only the NE part of the au-
tocorrelation, the equilibrium fluctuations enter eq. (31)
additively [72]. In fig. 2 it was already shown how eq. (30)
nicely describes the experimental results of the GRAD-
FLEX experiment for a binary mixture of polystyrene in
toluene [64–66].
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It is interesting to note that, in the limit q → 0, the
intensity of the NE concentration fluctuations reaches a
constant non-zero limit independent of q, namely,

1 + Bc(q)
q4

q→0−−−→ L4

720
+ O(q2). (33)

In eq. (33), as well as in the experimental data of fig. 2, one
observes that, while the NE temperature fluctuations van-
ish for very small q as discussed earlier, the NE concentra-
tion fluctuations reach a finite limit for very large size as
q → 0. This difference is a direct consequence of the differ-
ent boundary conditions to be satisfied by the temperature
and the concentration fluctuations at the bounding plates.
When gravity is incorporated, the exact solution can only
be obtained numerically [71] and it becomes dependent on
the solutal Rayleigh number Ras = βL4g ·∇c0/νD. How-
ever, although eq. (33) applies only in microgravity, the
qualitative effect of confinement remains similar if gravity
is taken into account. This has been demonstrated both by
Galerkin approximations [70] and by the numerical eval-
uation of the solution of the fluctuating hydrodynamics
equations [71].

5.2 Finite-size effects on the dynamics of
non-equilibrium fluctuations

There are few systematic studies on the effect of confine-
ment on the dynamics of NE fluctuations. Only recently,
the case of concentration fluctuations in a binary mixture
has been considered in some detail [77,78]. It does not ap-
pear to be possible to obtain an analytical solution for the
autocorrelation function when boundary conditions are in-
cluded, but numerical calculations have been performed
for different negative solutal Rayleigh numbers. These nu-
merical calculations turn out be in good agreement with
both experimental data and with computational fluid dy-
namics simulations [77,78]. The main impact of confine-
ment is a slowing-down of the fluctuations with wave num-
ber qL ≤ 5.18. In this range of very small wave numbers,
the time constants are again diffusive-like with a reduced
diffusion coefficient. Specifically, in the limit of small wave
numbers [77,78]:

lim
q→0

τconf =
1

Dq2(1 − Ras
Ras,c

)
, (34)

which replaces eq. (32) for qL � 5.18. Thus confinement
changes the non-diffusive behaviour implied by eq. (29)
as q → 0, and diffusive behaviour is again recovered, but
with a renormalized diffusion coefficient. As clearly shown
in fig. 5, for stabilizing concentration gradients, the ex-
perimental decay times as a function of the wave number
display a local minimum as a function of the wave number
for any value of the solutal Rayleigh number and as q → 0
the decay times crossover to the limiting behavior given
by eq. (32).

A similar analysis of the effect of confinement on the
NE temperature fluctuations is not yet available. The ef-
fect is expected to be somewhat different than the effect on

Fig. 5. Decay times of non-equilibrium concentration fluctua-
tions in a binary mixture of 1,2,3,4-tetrahydronaphtalene and
n-dodecane subjected to a stabilizing temperature gradient.
Different symbols are for different thicknesses of the sample
cell, thus resulting in different solutal Rayleigh numbers. Fig-
ure reproducing data already published in [77].

the concentration fluctuations due to the different bound-
ary conditions for the temperature fluctuations. For the
NE concentration fluctuations, GRADFLEX experiments
have confirmed that in microgravity (q4

RO,c = 0) the dy-
namics of the NE concentration fluctuations is not affected
by the gradients, in accordance with eq. (32) [64–66].

6 Non-equilibrium fluctuation-induced forces

Fluctuation-induced forces will appear in confined fluids
when long-range fluctuations are present [80]. They are
also often referred to as Casimir forces, since they origi-
nally were found as a result of quantum fluctuations of the
electromagnetic field in vacuum [81]. A well-known exam-
ple in fluids is the Casimir effect resulting from the long-
range critical fluctuations earlier mentioned in sect. 2.3.
The presence of Casimir forces due to the long-range
non-equilibrium fluctuations has been predicted by Kirk-
patrick et al. [9–13].

In a confined fluid layer subjected to a temperature
gradient ∇T0 the non-equilibrium temperature fluctua-
tions will induce a Casimir pressure, such that

pNE(r) =
ρcp(γ − 1)

2T 0

B
〈
(δT (r))2

〉
NE

(35)

with a thermodynamic pre-factor

B = 1 − 1
αcp

(
∂cp

∂T

)
p

+
1
α2

(
∂α

∂T

)
p

. (36)

In eq. (35) γ is the ratio of the isobaric and isochoric heat
capacities and 〈(δT (r))2〉NE is the intensity of the non-
equilibrium temperature fluctuations at position r [9,10].
The effects of this non-equilibrium Casimir force are two-
fold, namely pNE(r) causes a rearrangement of the local
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equilibrium density profile ρ0(r) and a deviation of the
local equilibrium pressure p0 [12]. Indeed, because of mass
conservation one has

ρ(r) = ρ0(r) − ρκT [pNE(r) − pNE] , (37)

with the actual (uniform) pressure being

p = p0 + pNE, (38)

where κT = ρ−1(∂ρ/∂p)T is the isothermal compressibil-
ity and pNE is the spatial average of pNE(r). Just as in
sect. 5, the detailed expression for 〈(δT (r))2〉NE in eq. (35),
but not the order of magnitude, depends on the boundary
conditions at the surfaces of the plates confining the fluid.
For a fluid layer between two thermally conducting plates
and for stress-free conditions for the velocity fluctuations,
Kirkpatrick et al. found a simple analytical solution such
that [12]

pNE =
ρcpkBT0

2
(γ − 1)

29πa(ν + a)
BL

(
∇T0

T0

)2

. (39)

Thus for a given temperature gradient ∇T0, the non-
equilibrium Casimir pressure will increase with the height
L of the fluid. For a fixed value of the temperature dif-
ference ΔT0 between the plates it will vary as L−1. This
is to be compared with a L−4 dependence with the plate
separation for electromagnetic Casmir forces, or a L−3 de-
pendence for critical Casimir forces [9].

In a layer of a binary fluid mixture with a concentra-
tion gradient ∇c0, Kirkpatrick et al. have also predicted
a Casimir pressure due to the non-equilibrium concentra-
tion fluctuations [11,13]:

pNE(r) = −ρ(γ − 1)
2αT

C
〈
(δc(r))2

〉
NE

(40)

with

C = χ−1
p,T − T

(
∂χ−1

p,T

∂T

)

p,c

− ρcp

α

(
∂χ−1

p,T

∂p

)

T,c

. (41)

In a binary-fluid layer between two impermeable walls and
for no-slip boundary conditions for the velocity fluctu-
ations, 〈(δc(r))2〉NE can be readily evaluated consistent
with eq. (30) [72], and one obtains for the Casimir pres-
sure caused by NE concentration fluctuations [13]

pNE = −kB(γ − 1)
2ανD

CFL (∇c0)
2
, (42)

where F is a numerical constant (F � 0.006).
Order-of-magnitude estimates for the predicted non-

equilibrium Casimir pressures presented elsewhere [13]
show that they are typically much larger than critical
Casimir pressures [12]. One physical reason is that the
intensity of the non-equilibrium fluctuations diverges for
small q as q−4 in accordance with eqs. (19) and (23), while
the intensity of critical fluctuations only diverges as q−2

in accordance with eq. (12).

Again the equations above have been obtained from
fluctuating hydrodynamics with local equilibrium values
for the thermophysical properties. They predict in con-
fined fluids a breakdown for the principle of local equi-
librium for the thermophysical properties as discussed by
Kirkpatrick et al. [10]. In principle one could iterate the
procedure by using the actual NE values of the thermo-
phyiscal properties. However, the non-equilibrium correc-
tions to the thermophysical properties from the local equi-
librium values are very small compared to the equilibrium
values (cf., 1 Pa compared to 105 Pa). Hence, one can con-
tinue to use the fluctuating hydrodynamics equations with
local values of the thermophysical properties to predict
accurately the deviations from local equilibrium in non-
equilibrium fluids.

7 Conclusions

In this paper we have reviewed the intensity and dynam-
ics of NE fluctuations in a variety of systems. The NE
fluctuations are greatly enhanced over the correspond-
ing equilibrium fluctuations, are long ranged extending
over the entire system size, are affected by gravity and
by finite-size effects. These non-local fluctuation phe-
nomena have been predicted on the basis of the equa-
tions of fluctuating hydrodynamics assuming local equilib-
rium values for all thermophysical properties in the equa-
tions and in the noise correlation fluctuations. The excel-
lent agreement of the predictions from these fluctuating-
hydrodynamics equations with the experimentally ob-
served non-local character of the NE fluctuations, as re-
viewed in the present paper, confirms the validity of the
extension of fluctuating hydrodynamics with local equilib-
rium property values to non-equilibrium states.

Actually, the agreement between experiment and fluc-
tuating hydrodynamics turns out to be so accurate that
experimental investigation of NE fluctuations is becom-
ing a new method for measuring transport properties of
fluids and fluid mixtures. This new method has been veri-
fied first on a reference fluid mixture [82,83] for extracting
mass diffusion and Soret coefficients from the dynamics of
concentration NE fluctuations. Subsequently, the same ap-
proach has been used to determine these transport prop-
erties for fluid mixtures at high pressure [84]. The thermal
diffusivity of fluids can be determined by measuring the
dynamics of NE temperature fluctuations [85]. The Soret
coefficient has also been determined from the analysis of
the intensity NE concentration fluctuations obtained in
microgravity conditions [65]. Applications of fluctuating
hydrodynamics to study NE concentration fluctuations in
ternary mixtures have also been initiated [79,86,87].

In the discussion above we have focused our attention
to theoretical predictions and experimental verifications
of the intensity and dynamics of NE fluctuations. It is
important to mention that in the last decade also efforts
have been made to apply Computational Fluid Dynamics
for investigating different aspects of NE fluctuations. In
particular computer simulations do not need some of the
approximations that are introduced in the theory and are
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therefore able to investigate more complicated, and some-
times more interesting, problems. Among the important
results obtained by this way we may mention the inves-
tigation of NE concentration fluctuations in microgravity
experiments both at steady state [88,89] and during the
transient state [66], the free diffusion of highly non-linear
sample of glycerol and water [90], the effect of confinement
on concentration NE fluctuations [77,78], the interaction
with the presence of surface tension [91], chemical reac-
tions [92] or electrostatic effects [93].

In non-equilibrium steady states, non-equilibrium fluc-
tuations are always present. They have intensities much
larger than their local equilibrium values, extend over the
entire system and are strongly affected by gravity and
confinement. The non-local fluctuation phenomena ob-
served experimentally are in very good agreement with the
features predicted from fluctuating hydrodynamics with
thermophysical property values equal to their local equi-
librium values. Hence, the assumption of local equilib-
rium in the equations of non-equilibrium thermodynamics
is consistent with the presence of non-local fluctuations
phenomena that are actually present in steady or quasi-
steady NE states. By quasi-steady NE states we mean
states in which the time dependence of the gradient is
slow compared to the relevant relaxation rates of the fluc-
tuations [94].

The fluctuating hydrodynamic equations not only
predict non-local fluctuation phenomena, but also non-
equilibrium contributions to the local equilibrium density
and the local equilibrium pressure in confined fluid lay-
ers as discussed in sect. 6. Experimental confirmations of
the latter deviations from local equilibrium are not yet
available.
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et leurs Réservoirs of the Uni-
versity of Pau (FR) at its An-
glet premises. Most of his ac-
tivities are related to the in-
vestigation of non-equilibrium
fluctuations.



Page 12 of 12 Eur. Phys. J. E (2016) 39: 125

José M. Ortiz de Zárate re-
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