2018 Impact factor 1.440
Condensed Matter and Complex Systems

EPJ D Highlight - Enabling longer space missions

A Hall thruster in operation. Image by the user Dstaak at Wikimedia Commons .

Hall thrusters, which are already used to propel spacecraft and satellites on long missions, could be used for even longer ones if models for minimising surface erosion were taken into account.

The 50th anniversary of the Apollo 11 moon landing has reignited interest in space travel. However, almost any mission beyond the moon, whether manned or unmanned, will require the spacecraft to remain fully operational for at least several years. The Hall thruster is a propulsion system that is often used by craft involved in long missions. A recent study by Andrey Shashkov and co-workers at the Moscow Institute of Physics and Technology, Russia has shown how the operating lives of these systems can be further extended; their work was recently published in EPJ D.

Read more...

EPJ D Highlight - Quantum momentum

Schemes for measuring time-of-flight in classical mechanics (top) and quantum mechanics (bottom). In quantum mechanics, the classical particle is represented by a wave packet. Values of X indicate position and t time.

A new quantum-mechanical model has been developed that allows the momentum of quantum particles to be measured using a variant of the classical time-of-flight.

Quantum mechanics is an extraordinarily successful way of understanding the physical world at extremely small scales. Through it, a handful of rules can be used to explain the majority of experimentally observable phenomena. Occasionally, however, we come across a problem in classical mechanics that poses particular difficulties for translation into the quantum world. A new study published in EPJ D has provided some insights into one of them: momentum. The authors, theoretical physicists Fabio Di Pumpo and Matthias Freyberger from Ulm University, Germany, present an elegant mathematical model of quantum momentum that is accessible through another classical concept: time-of-flight.

Read more...

EPJ B Highlight - Entropy explains RNA diffusion rates in cells

RNA molecules diffuse in characteristic ways. https://commons.wikimedia.org/ wiki/File:50S-subunit_of_the_ ribosome_3CC2.png

Mathematical analysis reveals that the exponential patterns in RNA diffusion rates linked to small-scale diffusive behaviours

Recent studies have revealed that within cells of both yeast and bacteria, the rates of diffusion of RNA proteins – complex molecules that convey important information throughout the cell – are distributed in characteristic exponential patterns. As it turns out, these patterns display the highest possible degree of disorder, or ‘entropy’, of all possible diffusion processes within the cell. In new research published in EPJ B, Yuichi Itto at Aichi Institute of Technology in Japan explores this behaviour further by zooming in to study local fluctuations in the diffusion rates of RNA proteins. By associating these small-scale diffusion rates with time-varying values for entropy, he finds that the rates of change of entropy in certain time intervals are larger in areas with higher RNA diffusion rates.

Read more...

Acting EiC: Wenhui Duan

Executive Editors:
B.K. Chakrabarti, W. Duan, E. Hernandez, H. Rieger
I am naturally indebted to you and the referees who contributed to this success with your time and constructive advice.

Hamid Assadi

ISSN (Print Edition): 1434-6028
ISSN (Electronic Edition): 1434-6036

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag