https://doi.org/10.1007/s100510051098
Evidence of bcc Mn epitaxial growth in Mn/MxV1-x(001) (M = Fe, Nb) superlattices
1
Laboratoire de Physique des Matériaux, CNRS/Université Nancy I, BP 239, 54506 Vandœuvre-les-Nancy Cedex,
France
2
CEMES/LOE, CNRS, BP 4347, 31055 Toulouse, France
3
LURE, CNRS/CEA/Université Paris-Sud, BP 34, 91898 Orsay, France
Received:
21
June
1999
Published online: 15 May 2000
This study is dedicated to the growth of bcc Mn by molecular beam epitaxy,
in order to look at the magnetic properties of bcc Mn near room
temperature. For
this purpose, Mn is deposited on bcc MxV(001) alloy lattices (M = Fe or
Nb) for
which the lattice spacing is tunable by varying the concentration x. We
first show
that the parameter of the MxV
alloy's buffer layers can be adjusted from
2.95 Å
to 3.3 Ådepending on x and M. Three different structures in Mn films grown on
these buffer layers are observed depending on the in-plane spacing of the
initial
MxV
lattice. Thick Mn films are always found to grow epitaxially in the Mnα
structure. For moderate thicknesses larger than 4 atomic planes, Mn grows in an
unidentified structure. Finally, up to four deposited atomic planes, Mn is
found to
grow in a tetragonal structure close to a bcc one on Fe(001), FexV
(001) and
NbxV
(001) for
. This tetragonal structure is shown to be a
distorsion of a
Mn bcc structure with
. Except for ultra-thin Mn films deposited on
Fe(001), no macroscopic magnetization is detected in our strained bcc Mn
samples. These results are compared to theoretical predictions.
PACS: 68.55.-a – Thin film structure and morphology / 68.65.+g – Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties / 75.70.-i – Magnetic films and multilayers
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2000