https://doi.org/10.1007/s100510070209
Growth exponent in the Domany-Kinzel cellular automaton
Departamento de Física, Instituto de Ciências Exatas,
Universidade Federal de Minas
Gerais, CP 702, 30123-970, Belo Horizonte, MG - Brazil
Corresponding authors: a atman@fisica.ufmg.br - b jmoreira@ipe.fisica.ufmg.br
Received:
15
March
2000
Published online: 15 August 2000
In a roughening process, the growth exponent β describes how the roughness w grows with the time t: w∼tβ. We determine the exponent β of a growth process generated by the spatiotemporal patterns of the one-dimensional Domany-Kinzel cellular automaton. The values obtained for β show a cusp at the frozen/active transition which permits determination of the transition line. The β value at the transition depends on the scheme used: symmetric (β≈0.83) or non-symmetric (β≈0.61). Using damage spreading ideas, we also determine the active/chaotic transition line; this line depends on how the replicas are updated.
PACS: 05.10.-a – Computational methods in statistical physics and nonlinear dynamics / 02.50.-r – Probability theory, stochastic processes, and statistics
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2000