https://doi.org/10.1007/s10051-001-8705-2
Thermodynamics and transport in an active Morse ring chain
Institute of Physics, Humboldt University Invalidenstrasse 110, 10115 Berlin, Germany
Corresponding author: a dunkel@physik.hu-berlin.de
Received:
21
July
2001
Published online: 15 December 2001
We investigate the stochastic dynamics of an one-dimensional ring
with N self-driven Brownian particles. In this model neighboring particles
interact via conservative Morse potentials. The influence of the surrounding
heat bath is modeled by Langevin-forces (white noise) and a constant viscous
friction coefficient . The Brownian particles are provided with
internal energy depots which may lead to active motions of the particles.
The depots are realized by an additional nonlinearly velocity-dependent
friction coefficient
in the equations of motions. In the first
part of the paper we study the partition functions of time averages and
thermodynamical quantities (e.g. pressure) characterizing the stationary
physical system. Numerically calculated non-equilibrium phase diagrams are
represented. The last part is dedicated to transport phenomena by including
a homogeneous external force field that breaks the symmetry of the model.
Here we find enhanced mobility of the particles at low temperatures.
PACS: 05.45.-a – Nonlinear dynamics and nonlinear dynamical systems / 05.70.Ln – Non-equilibrium and irreversible thermodynamics / 05.40.-a – Fluctuation phenomena, random processes, noise and Brownian motion
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2001