https://doi.org/10.1140/epjb/e2004-00285-7
Magnetization reversal measurements in mesoscopic amorphous magnets by magneto-optical Kerr effect
Depto. Física, Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo, Spain
Corresponding author: a jmartin@condmat.uniovi.es
Received:
11
December
2003
Revised:
16
June
2004
Published online:
24
September
2004
A magneto-optical setup based on the transverse Kerr effect has been designed to study the magnetization reversal processes by vector magnetometry in arrays of magnetic nanostructures with a reduced total volume. This system allows the measurement of both the parallel and perpendicular to the field components of the magnetization. It has been used to analyze the behavior of amorphous CoxSi lines fabricated by electron beam lithography that present a very well defined shape induced uniaxial anisotropy. When the field is applied near to the hard direction, coherent rotation processes are found to occur with a collapse of this reversal mode at fields very close to the hard axis that allows to estimate the very low anisotropy dispersion of these samples. The analysis of the vector hysteresis loops reveals that the magnetization switches via an incoherent process that starts prior to the Stoner-Wohlfarth instability and that can be described in terms of a localized curling-like reversal mode.
PACS: 75.75.+a – Magnetic properties of nanostructures / 75.60.Jk – Magnetization reversal mechanisms / 75.50.Kj – Amorphous and quasicrystalline magnetic materials
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2004