https://doi.org/10.1140/epjb/e2004-00365-8
Non-concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton
Department of Electrical Engineering ESAT-SCD (SISTA), Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
Corresponding author: a sven.maerivoet@esat.kuleuven.ac.be
Received:
11
June
2004
Published online:
26
November
2004
Within the class of stochastic cellular automata models of traffic flows, we look at the velocity dependent randomization variant (VDR-TCA) whose parameters take on a specific set of extreme values. These initial conditions lead us to the discovery of the emergence of four distinct phases. Studying the transitions between these phases, allows us to establish a rigorous classification based on their tempo-spatial behavioral characteristics. As a result from the system's complex dynamics, its flow-density relation exhibits a non-concave region in which forward propagating density waves are encountered. All four phases furthermore share the common property that moving vehicles can never increase their speed once the system has settled into an equilibrium.
PACS: 02.50.-r – Probability theory, stochastic processes, and statistics / 05.70.Fh – Phase transitions: general studies / 45.70.Vn – Granular models of complex systems; traffic flow / 89.40.-a – Transportation
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2004