https://doi.org/10.1140/epjb/e2006-00265-y
Boltzmann-Gibbs thermal equilibrium distribution for classical systems and Newton law: a computational discussion
1
Dipartimento di Fisica and Sezione INFN, Università di Padova, via Marzolo 8, 35131 Padova, Italy
2
Centro Brasileiro de Pesquisas Físicas, rua Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ, Brazil
3
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501, USA
Corresponding authors: a baldovin@pd.infn.it - b moyano@cbpf.br - c tsallis@santafe.edu
Received:
20
May
2005
Revised:
15
February
2006
Published online:
6
July
2006
We implement a general numerical calculation that allows for a direct comparison between nonlinear Hamiltonian dynamics and the Boltzmann-Gibbs canonical distribution in Gibbs Γ-space. Using paradigmatic first-neighbor models, namely, the inertial XY ferromagnet and the Fermi-Pasta-Ulam β-model, we show that at intermediate energies the Boltzmann-Gibbs equilibrium distribution is a consequence of Newton second law (F=ma). At higher energies we discuss partial agreement between time and ensemble averages.
PACS: 05.10.-a – Statistical physics, thermodynamics, and nonlinear dynamical systems / 05.20.-y – Classical statistical mechanics / 05.45.-a – Nonlinear dynamics and chaos / 05.20.Gg – Classical ensemble theory
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2006