https://doi.org/10.1140/epjb/e2007-00154-y
Spin torque transfer structure with new spin switching configurations
The Center for Micromagnetics and Information Technologies (MINT) & Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
Corresponding author: a jpwang@umn.edu
Received:
1
October
2006
Revised:
10
April
2007
Published online:
3
August
2007
Spin torque transfer structures with new spin switching configurations are proposed, fabricated and investigated in this paper. The non-uniform current-induced magnetization switching is implemented based on both GMR and MTJ nano devices. The proposed new spin transfer structure has a hybrid free layer that consists of a layer with conductive channels (magnetic) and non-conductive matrix (non-magnetic) and traditional free layer(s). Two mechanisms, a higher local current density by nano-current-channels and a non-uniform magnetization switching (reversal domain nucleation and growth) by a magnetic nanocomposite structure, contribute in reducing the switching current density. The critical switching current density for the new spin transfer structure is reduced to one third of the typical value for the normal structure. It can be expected to have one order of magnitude or more reduction for the critical current density if the optimization of materials and fabrication processes could be done further. Meanwhile, the thermal stability of this new spin transfer structure is not degraded, which may solve the long-standing scaling problem for magnetic random access memory (MRAM). This spin transfer structure, with the proposed and demonstrated new spin switching configurations, not only provides a solid approach for the practical application of spin transfer devices but also forms a unique platform for researchers to explore the non-uniform current-induced switching process.
PACS: 72.25.-b – Spin polarized transport / 72.25.Ba – Spin polarized transport in metals / 73.63.-b – Electronic transport in nanoscale materials and structures / 75.47.-m – Magnetotransport phenomena; materials for magnetotransport
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2007