https://doi.org/10.1140/epjb/e2009-00131-6
The importance of non-local shadowing for the topography evolution of a-C:H films grown by toluene based plasma enhanced chemical vapor deposition
1
Fraunhofer Institute for Mechanics of Materials, Wöhlerstr. 11, 79108 Freiburg, Germany
2
Institute of Physics, Albert-Ludwigs University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
Corresponding author: a christoph.hormann@iwm.fraunhofer.de
Received:
28
November
2008
Published online:
15
April
2009
The topography evolution of hydrogenated diamond-like carbon coatings deposited through toluene based capacitively coupled plasma enhanced chemical vapor deposition has been studied experimentally and with continuum growth models. The experimentally observed mound formation and surprisingly large growth exponents (β≈ 0.9±0.1) cannot be reproduced by familiar local stochastic differential equations that are successfully used for other thin film deposition techniques. Here we introduce a novel numerical approach to simulate a continuum growth model that takes into account non-local shadowing effects. We show that the major characteristics of the experimentally observed topography evolution can be accurately represented by this model.
PACS: 81.15.Aa – Theory and models of film growth / 81.15.Gh – Chemical vapor deposition
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2009