https://doi.org/10.1140/epjb/e2010-10404-6
Scaling and self-averaging in the three-dimensional random-field Ising model
Department of Physics, Section of
Solid State Physics, University of Athens, Panepistimiopolis,
15784 Zografos, Athens, Greece
Corresponding author: a nfytas@phys.uoa.gr
Received:
19
May
2010
Revised:
7
October
2010
Published online:
29
November
2010
We investigate, by means of extensive Monte Carlo
simulations, the magnetic critical behavior of the
three-dimensional bimodal random-field Ising model at the strong
disorder regime. We present results in favor of the two-exponent
scaling scenario, = 2η, where η and
are the critical exponents describing the power-law
decay of the connected and disconnected correlation functions and
we illustrate, using various finite-size measures and properly
defined noise to signal ratios, the strong violation of
self-averaging of the model in the ordered phase.
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2010