https://doi.org/10.1140/epjb/e2011-10905-8
The aggregate complexity of decisions in the game of Go
1
The Centre for the Mind, The University of Sydney, 2006 Sydney, Australia
2
Centre for Research in Complex Systems, Charles Sturt University, Bathurst, NSW, 2795, Australia
Corresponding author: a mike@centreforthemind.com
Received:
21
November
2010
Revised:
2
March
2011
Published online:
24
March
2011
Artificial intelligence (AI) research is fast approaching, or perhaps has already reached, a bottleneck whereby further advancement towards practical human-like reasoning in complex tasks needs further quantified input from large studies of human decision-making. Previous studies in psychology, for example, often rely on relatively small cohorts and very specific tasks. These studies have strongly influenced some of the core notions in AI research such as the reinforcement learning and the exploration versus exploitation paradigms. With the goal of contributing to this direction in AI developments we present our findings on the evolution towards world-class decision-making across large cohorts of subjects in the formidable game of Go. Some of these findings directly support previous work on how experts develop their skills but we also report on several previously unknown aspects of the development of expertise that suggests new avenues for AI research to explore. In particular, at the level of play that has so far eluded current AI systems for Go, we are able to quantify the lack of 'predictability' of experts and how this changes with their level of skill.
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2011