https://doi.org/10.1140/epjb/e2012-30435-1
Regular Article
Statistical properties of the one dimensional Anderson model relevant for the nonlinear Schrödinger equation in a random potential
Physics Department, Technion – Israel Institute of
Technology, 32000
Haifa,
Israel
a e-mail: erezmichaely@gmail.com
Received:
31
May
2012
Received in final form:
21
June
2012
Published online:
31
October
2012
The statistical properties of overlap sums of groups of four eigenfunctions of the Anderson model for localization as well as combinations of four eigenenergies are computed. Some of the distributions are found to be scaling functions, as expected from the scaling theory for localization. These enable to compute the distributions in regimes that are otherwise beyond the computational resources. These distributions are of great importance for the exploration of the nonlinear Schrödinger equation (NLSE) in a random potential since in some explorations the terms we study are considered as noise and the present work describes its statistical properties.
Key words: Statistical and Nonlinear Physics
© EDP Sciences, Società Italiana di Fisica and Springer-Verlag, 2012