https://doi.org/10.1140/epjb/e2013-30669-3
Regular Article
Exploiting magnetic properties of Fe doping in zirconia*
From first-principles simulations to the experimental growth and characterization of thin films
1
Laboratorio MDM - IMM - CNR
via C. Olivetti, 2 20864
Agrate Brianza ( MB), Italy
2
IMEM-CNR, Parco
delle Scienze 37/A, 43124
Parma,
Italy
a e-mail: davide.sangalli@gmail.com
Received:
24
July
2012
Received in final form:
13
February
2013
Published online:
16
May
2013
In this study we explore, both from theoretical and experimental side, the effect of Fe doping in ZrO2 (ZrO2:Fe). By means of first principles simulation, we study the magnetization density and the magnetic interaction between Fe atoms. We also consider how this is affected by the presence of oxygen vacancies and compare our findings with models based on impurity band [J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)] and carrier mediated magnetic interaction [T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)]. Experimentally, thin films (≈20 nm) of ZrO2:Fe at high doping concentration are grown by atomic layer deposition. We provide experimental evidence that Fe is uniformly distributed in the ZrO2 by transmission electron microscopy and energy dispersive X-ray mapping, while X-ray diffraction evidences the presence of the fluorite crystal structure. Alternating gradient force magnetometer measurements show magnetic signal at room temperature, however, with low magnetic moment per atom. Results from experimental measures and theoretical simulations are compared.
© EDP Sciences, Società Italiana di Fisica and Springer-Verlag, 2013