https://doi.org/10.1140/epjb/e2015-60362-4
Regular Article
Universality in four-dimensional random-field magnets
1
Applied Mathematics Research Centre, Coventry
University, Coventry,
CV1 5FB,
UK
2
Department of Chemical Engineering, Imperial College London, London
SW7 2AZ,
UK
a
e-mail: nikolaos.fytas@coventry.ac.uk
Received: 5 May 2015
Received in final form: 26 June 2015
Published online: 10 August 2015
We investigate the universality aspects of the four-dimensional random-field Ising model (RFIM) using numerical simulations at zero temperature. We consider two different, in terms of the field distribution, versions of the model, namely a Gaussian RFIM and an equal-weight trimodal RFIM. By implementing a computational approach that maps the ground-state of the system to the maximum-flow optimization problem of a network, we employ the most up-to-date version of the push-relabel algorithm and simulate large ensembles of disorder realizations of both models for a broad range of random-field values and system sizes. Using as finite-size measures the sample-to-sample fluctuations of the order parameter of the system, we propose, for both types of distributions, estimates of the critical field hc and the critical exponent ν of the correlation length, the latter suggesting that the two models in four dimensions share the same universality class.
Key words: Statistical and Nonlinear Physics
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2015