https://doi.org/10.1140/epjb/e2016-70359-0
Regular Article
Kramers escape of a self-propelled particle
Institute of Physics, University of Augsburg,
86159
Augsburg,
Germany
a
e-mail: alexander.geiseler@physik.uni-augsburg.de
Received:
6
June
2016
Published online:
8
August
2016
We investigate the escape rate of an overdamped, self-propelled spherical Brownian particle on a surface from a metastable potential well. Within a modeling in terms of a 1D constant speed of the particle’s active dynamics we consider the associated rate using both numerical and analytical approaches. Regarding the properties of the stationary state in the potential well, two major timescales exist, each governing the translational and the rotational dynamics of the particle, respectively. The particle radius is identified to present the essential quantity in charge of regulating the ratio between those timescales. For very small and very large particle radii, approximate analytic expressions for the particle’s escape rate can be derived, which, within their respective range of validity, compare favorably with the precise escape numerics of the underlying full two-dimensional Fokker-Planck description.
Key words: Statistical and Nonlinear Physics
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2016