https://doi.org/10.1140/epjb/s10051-021-00186-9
Regular Article - Computational Methods
Comparing state-of-the-art approaches to back-calculate SAXS spectra from atomistic molecular dynamics simulations
Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136, Trieste, Italy
a
mbernett@sissa.it
b
bussi@sissa.it
Received:
15
April
2021
Accepted:
10
August
2021
Published online:
14
September
2021
Small-angle X-ray scattering (SAXS) experiments are arising as an effective instrument in the structural characterization of biomolecules in solution. However, they suffer from limited resolution, and complementing them with molecular dynamics (MD) simulations can be a successful strategy to obtain information at a finer scale. To this end, tools that allow computing SAXS spectra from MD-sampled structures have been designed over the years, mainly differing in how the solvent contribution is accounted for. In this context, RNA molecules represent a particularly challenging case, as they can have a remarkable effect on the surrounding solvent. Herein, we provide a comparison of SAXS spectra computed through different available software packages for a prototypical RNA system. RNA conformational dynamics is intentionally neglected so as to focus on solvent effects. The results highlight that solvent effects are important also at relatively low scattering vector, suggesting that approaches explicitly modeling solvent contribution are advisable when comparing with experimental data, while more efficient implicit-solvent methods can be a better choice as reaction coordinates to improve MD sampling on-the-fly.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.