https://doi.org/10.1140/epjb/s10051-022-00365-2
Regular Article - Mesoscopic and Nanoscale Systems
Charge and energy transfer in ac-driven Coulomb-coupled double quantum dots
1
Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
2
Istituto Officina dei Materiali (IOM), Consiglio Nazionale delle Ricerche, Via Bonomea 265, 34136, Trieste, Italy
Received:
12
May
2022
Accepted:
13
June
2022
Published online:
25
June
2022
We study the dynamics of charge and energy currents in a Coulomb-coupled double quantum dot system, when only one of the two dots is adiabatically driven by a time-periodic gate that modulates its energy level. Although the Coulomb coupling does not allow for electron transfer between the dots, it enables an exchange of energy between them which induces a time variation of charge in the undriven dot. We describe the effect of electron interactions at low temperature using a time-dependent slave-spin 1 formulation within mean field that efficiently captures the main effects of the strong correlations as well as the dynamical nature of the driving. We find that the currents induced in the undriven dot due to the mutual friction between inter-dot electrons are of the same order as those generated in the adiabatically driven dot. Interestingly, up to 43% of the energy injected by the ac sources can be transferred from the driven dot to the undriven one. We complete our analysis by studying the impact of the Coulomb interaction on the resistance of the quantum dot that is driven by the gate.
Copyright comment corrected publication 2022
© The Author(s) 2022. corrected publication 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.