https://doi.org/10.1140/epjb/s10051-022-00407-9
Regular Article - Solid State and Materials
Comparative study on transport and optical properties of silicon carbide nanoribbons with different terminations
1
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, 066004, Qinhuangdao, China
2
School of Mechanical Engineering, Yanshan University, 066004, Qinhuangdao, China
Received:
14
February
2022
Accepted:
22
August
2022
Published online:
7
September
2022
Silicon carbide nanoribbons (SiCNRs) are a novel layered material with potential value in the field of nanodevices. Based on the first-principles calculation, we investigated the effects of different terminations on the bandgap, transport, and optical properties of SiCNRs. The results show that for infinite width nanoribbons, the bandgap of SiCNSs with translational periodicity is increased and the optical anisotropy is more pronounced compared with that of SiCNTs with circular periodicity. For finite-width SiCNRs, impurity-like levels appear in the bandgap, which originate from the dispersion of the energy bands due to dangling bonds at the edges and nano-size effects, respectively. The dangling bonds are saturated with hydrogen atoms for hydrogen-passivated SiCNRs (H–SiCNRs), the energy levels are more discretized and the bandgap is reduced. Simulation of transport properties of different terminations shows that the variation range hopping mechanism caused by finite width is the dominant mechanism below room temperature, and the optical phonon scattering is the dominant mechanism above room temperature. In addition, the dielectric response of H–SiCNRs appeared in the deep-UV region. These findings are favorable for the application of SiC nanomaterials in optoelectronic devices.
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/epjb/s10051-022-00407-9.
Copyright comment Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.