https://doi.org/10.1140/epjb/s10051-023-00484-4
Regular Article - Statistical and Nonlinear Physics
Multi-layer network approach in modeling epidemics in an urban town
Department of Computer Engineering, Bogazici University, 34342, Istanbul, Turkey
Received:
17
November
2022
Accepted:
23
January
2023
Published online:
6
February
2023
The last three years have been an extraordinary time with the COVID-19 pandemic killing millions, affecting and distressing billions of people worldwide. Authorities took various measures such as turning school and work to remote and prohibiting social relations via curfews. In order to mitigate the negative impact of the epidemics, researchers tried to estimate the future of the pandemic for different scenarios, using forecasting techniques and epidemics simulations on networks. Intending to better represent the real-life in an urban town in high resolution, we propose a novel multi-layer network model, where each layer corresponds to a different interaction that occurs daily, such as “household”, “work” or “school”. Our simulations indicate that locking down “friendship” layer has the highest impact on slowing down epidemics. Hence, our contributions are twofold, first we propose a parametric network generator model; second, we run SIR simulations on it and show the impact of layers.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.