https://doi.org/10.1140/epjb/s10051-023-00553-8
Regular Article - Solid State and Materials
Anomalous Floquet topological phase in a lattice of LC resonators
Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
Received:
12
July
2022
Accepted:
2
June
2023
Published online:
16
June
2023
Periodically driven systems provide a new platform for studying and realizing novel topological phases of matter that cannot be observed in static systems. These so-called anomalous Floquet topological insulators support topologically protected edge states, despite having zero Chern number bands. Here, we propose a circuit realization of an anomalous Floquet topological insulator. Based on a simple model, we designed a lattice of inductors and capacitors connected through electrical switches. We cast the governing equations of the circuit in the form of a Schrodinger-like equation and implement the Hamiltonian of an anomalous Floquet topological insulator by the circuit. Using a current source for excitation, the propagation of the topological edge state in the circuit is analyzed.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.