https://doi.org/10.1140/epjb/s10051-024-00650-2
Regular Article - Statistical and Nonlinear Physics
Stochastic optimal control of a tri-stable energy harvester with the P-SSHI circuit under colored noise
Department of Mechanics, Beijing Institute of Technology, 100081, Beijing, China
Received:
29
November
2023
Accepted:
10
January
2024
Published online:
22
January
2024
In this paper, the stochastic optimal control of a piecewise electromechanically coupled tri-stable energy harvester (TEH) driven by colored noise is investigated. For the purpose of efficient DC supply, the P-SSHI circuit is chosen as the harvesting circuit connected to the TEH. Based on the statistical linearization and the moment method, the analytical expressions of the stationary response moments and the mean harvested power are derived. Then, the stochastic optimal control problem of the TEH is considered from the perspective of extremum optimization of the multivariable function. The effects of colored noise and system parameters on harvesting performance and control effectiveness are further explored. The results show that the time constant ratio can improve the harvested DC power but weaken the rectification efficiency of the circuit, which plays an opposite role to the inversion factor. The electromechanical-coupled coefficient is beneficial to the enhancement of DC power, but it is not conducive to the effectiveness of the control method. The control effectiveness of the rectification efficiency can be optimized by choosing an appropriate noise intensity. The harvesting performance of controlled TEH is significantly higher than that without control. The Monte Carlo simulations (MCS) well support the theoretical results.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.