https://doi.org/10.1140/epjb/s10051-024-00724-1
Regular Article - Solid State and Materials
Effect of time oscillating magnetic fields on the vortex dynamics of superconducting thin films with columnar defect and slit
School of Science, Lanzhou University of Technology, 730050, Lanzhou, China
Received:
18
January
2024
Accepted:
7
June
2024
Published online:
28
June
2024
The time-dependent Ginzburg–Landau equation (TDGL) for type II superconducting films containing columnar defects and slits was solved numerically using finite-element techniques. The Gibbs free energy of the system and the corresponding dynamical behavior of the vortex are analyzed under stable and time-oscillating magnetic fields. The effect of the frequency of the applied magnetic field on both the energy profile was observed. Finally, we discussed the impact of the Ginzburg–Landau parameter on the quantity of complete vortices generated.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.