https://doi.org/10.1140/epjb/s10051-024-00760-x
Regular Article – Statistical and Nonlinear Physics
A new memristive map neuron, self-regulation and coherence resonance
Department of Physics, Lanzhou University of Technology, 730050, Lanzhou, China
Received:
21
April
2024
Accepted:
28
July
2024
Published online:
17
August
2024
Activation of firing patterns requires continuous energy exchange between magnetic and electric field in the neurons. Complexity of ion channels supports energy diversity among capacitive, inductive and memristive channel, and then the Calcium, sodium and potassium flows are pumped and diffused to trigger suitable firing modes in the neural activities. In this work, a magnetic flux-controlled memristor connected with an inductor in series is used to describe the physical effect of propagated ions, and an additive nonlinear resistor and a capacitor are connected to design a simple neural circuit. A memristive neuron model is suggested for dynamical analysis and energy description. Furthermore, linear transformation including time scale is used to convert this memristive oscillator into an equivalent memristive map. Energy function is given for this memristive map and an adaptive control law is used to control the mode transition in this map neuron. Furthermore, coherence resonance is discussed under noisy disturbance.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.