https://doi.org/10.1140/epjb/s10051-024-00835-9
Regular Article - Statistical and Nonlinear Physics
Performance at maximum cooling power for a parallelly connected two quantum dots refrigerator
Department of Physics, Wolkite University, Wolkite, Ethiopia
Received:
11
June
2024
Accepted:
21
November
2024
Published online:
13
December
2024
In this paper, we examine the performance characteristics at maximum cooling power for a parallelly connected two quantum dots refrigerator within the framework of ballistic electron transport between two reservoirs. The coefficient of performance (COP) at the maximum cooling power, which depends on the Carnot bound, was analyzed for a refrigerator of the quantum dot(QD) system and successfully compared with the Curzon–Ahlborn coefficient of performance. Besides, the coefficient of performance at the maximum cooling power of the model was demonstrated through numerical analysis. Our results indicate that the coefficient of performance at maximum cooling power differs from the Curzon–Ahlborn coefficient of performance in the limit of a small Carnot coefficient of performance. It is constrained by an upper bound of and a lower bound of
.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.