https://doi.org/10.1140/epjb/s10051-025-00876-8
Regular Article - Computational Methods
Density functional theory study on structural, mechanical, electronic, and phonon properties of CrAlB, MoAlB, WAlB, CrAlGa, MoAlGa, and WAlGa ternary compounds
Department of Physics, University of South Africa, 1709, Johannesburg, South Africa
Received:
25
November
2024
Accepted:
3
February
2025
Published online:
6
March
2025
In this study, we present the structural, mechanical, electronic, and optical properties of CrAlB, MoAlB, WAlB, CrAlGa, MoAlGa, and WAlGa compounds using first-principles density functional theory calculations. We assessed structural stability through heat of formation and found that most compounds have negative heat of formation indicating thermodynamic stability, except for MoAlGa and WAlGa. The elastic constants and moduli indicate that all CrAlB, MoAlB, WAlB, CrAlGa, MoAlGa, and WAlGa compounds are mechanically stable, exhibit elastic anisotropic behavior, relatively machinable, and mixed bonding characteristics with both ionic and covalent contributions. The MAlB (M = Cr, Mo, W) compounds display a brittle nature, whereas MAlGa exhibits ductile behavior. Analysis of Vickers hardness indicate that MAlB compounds are hard compared to MAlGa. The electronic band structures and density (DOS) of states indicate a clear metallic nature in both MAlGa and MAlB compounds. The electronic density difference plots indicate a spherical charge distribution with ionic bonding in MAlB and oblate charge distribution showing covalent bonding in MAlGa. Phonon dispersion analysis demonstrated dynamic stability in MAlB compounds, while MAlGa are dynamically unstable. We note that MAlB compounds are thermodynamically, mechanically, and dynamically stable, making them suitable for high-temperature structural applications such as aerospace and gas turbine engines.
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/epjb/s10051-025-00876-8.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.