https://doi.org/10.1140/epjb/s10051-025-00894-6
Regular Article - Statistical and Nonlinear Physics
Chirality-induced rectification in asymmetric gear systems
1
School of Physics and Optoelectronics, South China University of Technology, 510641, Guangzhou, China
2
School of Physics, South China Normal University, 510006, Guangzhou, China
Received:
16
December
2024
Accepted:
28
February
2025
Published online:
18
March
2025
We investigate the emergence of unidirectional rotation in an asymmetric gear immersed in a chiral active particle bath under periodic boundary conditions. Our results demonstrate that the nonequilibrium characteristics of self-propelled particles can drive sustained rotational motion of the gear. The study reveals that both particle chirality and gear asymmetry independently induce symmetry breaking, which collectively leads to directed rotation. The rotational direction is determined by the interplay between these two factors, and we demonstrate that the direction can be reversed through systematic parameter control. Furthermore, we identify optimal parameter combinations of particle chirality and self-propulsion speed that maximize the gear’s rotational velocity. These findings provide fundamental insights into the control of active matter systems and offer practical guidelines for experimental designs that utilize chiral active matter to transform random motion into controlled directional movement.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2025
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.