https://doi.org/10.1140/epjb/s10051-025-00924-3
Regular Article - Computational Methods
Impact of diameter-to-length ratio on mechanical fatigue and cyclic behavior of gold nanowires: a molecular dynamics study
1
Engineering Physics Department, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
2
Industrial Engineering Department, Petra Christian University, Surabaya, Indonesia
Received:
14
January
2025
Accepted:
8
April
2025
Published online:
21
April
2025
Gold nanowires (AuNWs) exhibit exceptional mechanical properties, making them promising for nanoscale electronics. However, their mechanical reliability under cyclic loading, particularly the effects of diameter-to-length ratio and pulling rate, remains insufficiently understood. This study addresses this knowledge gap by investigating the impact of these factors on the mechanical fatigue behavior of AuNWs using molecular dynamics simulations. Stress–strain analyses and common neighbor analysis (CNA) were employed to assess mechanical responses and structural evolution during cyclic deformation. The findings reveal that smaller AuNWs (e.g., 1 nm diameter) undergo rapid strain hardening due to limited dislocation nucleation, resulting in high stress capacity but brittle failure. In contrast, larger AuNWs (3–9 nm diameters) exhibit greater plastic accommodation and localized deformation, delaying failure and enhancing mechanical stability. The pulling rate further modulates these behaviors, with higher rates increasing peak stresses and lower rates promoting plastic relaxation. By elucidating the interplay between diameter, loading conditions, and fatigue behavior, this study provides novel insights into the structural reliability of AuNWs, offering a foundation for their optimized design in advanced nanoscale applications.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2025
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.