https://doi.org/10.1140/epjb/s10051-025-00977-4
Regular Article - Statistical and Nonlinear Physics
A four-terminal thermoelectric heat engine based on three coupled quantum dots
Department of Physics, Nanchang University, Nanchang, 330031, Nanchang, China
Received:
4
March
2025
Accepted:
30
May
2025
Published online:
27
June
2025
A four-terminal thermoelectric heat engine model based on three capacitively coupled quantum dots is proposed. This system comprises two thermal reservoirs, three interconnected quantum dots, and left/right electron reservoirs. Using master equation theory, we derive analytical expressions for heat flows and electron currents between the quantum dots and their respective reservoirs. Numerical simulations reveal three different operating regimes for which the efficiency is defined as the ratio of power to absorbed heat. We focus on the regime where the heat engine generates output power by utilizing thermal energy from both reservoirs. The effects of key parameters—including temperature gradients, applied voltages, energy levels, and Coulomb charging energies—on the system’s performance are systematically analyzed. Results demonstrate that optimal power output and efficiency at maximum power can be achieved through parameter tuning. This work provides theoretical insights for designing high-performance nanoscale thermoelectric devices.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2025
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.