EPJ B Highlight - Separations between earthquakes reveal clear patterns
- Details
- Published on 12 March 2020

A new analysis of real earthquake data shows that the similarity between inter-earthquake times and distances displays a distinct relationship with their separation from an initial earthquake.
When large earthquakes occur, seismologists are well aware that subsequent, smaller tremors are likely to take place afterwards in the surrounding geographical region. So far, however, few studies have explored how the similarity between these inter-earthquake times and distances is related to their separation from initial events. In a new study published in EPJ B, researchers led by Min Lin at the Ocean University of China in Qingdao show for the first time that the two values become increasingly correlated the closer they are in time and space to previous, larger earthquakes.
EPJ B Highlight - Stimulating resonance with two very different forces
- Details
- Published on 25 February 2020

In some specialised oscillators, two driving forces with significantly different frequencies can work together to make the whole system resonate.
Widely studied in many different fields, ‘nonlinear’ systems can display excessively dramatic responses when the forces which cause them to vibrate are changed. Some of these systems are sensitive to changes in the very parameters which define their driving forces, and can be well described using mathematical equations. These ‘parametric’ oscillators have been widely researched in the past, but so far, few studies have investigated how they will respond to multiple driving forces. In new research published in EPJ B, Dhruba Banerjee and colleagues at Jadavpur University in Kolkata explore this case in detail for the first time. They show that some parametric oscillators can be made to resonate when tuned by a high driving frequency to match a separate, far lower frequency.
EPJ B Highlight - Ultracold gases in time-dependent magnetic fields
- Details
- Published on 04 February 2020

The phase transitions of an ultracold gas under a fluctuating magnetic field show interesting patterns, particularly a loss of symmetry in the energy spectrum that is well observed in the disappearance of the ‘Hofstadter’s butterfly’ effect.
It is now technically possible to hold groups of atoms at temperatures that are only a few hundredths of a degree above absolute zero. This so-called ‘ultracold gas’ loaded in an optical lattice is an extremely powerful platform to study quantum mechanical phenomena including phase transitions, due to the excellent control of experimental parameters, such as potential depths, inter-particle interaction strengths and lattice parameters. Sk Noor Nabi from Zhejiang University in Hangzhou, China and colleagues in the Indian Institute of Technology, Guwahati, India, have studied the phase transition between the Mott insulating (MI) and superfluid (SF) states of such a gas in a time-dependent synthetic magnetic field. Their results, published in EPJ B, show that the energy spectrum of the gas loses symmetry in the fluctuating magnetic field. This is observed in the disappearance of the striking ‘Hofstadter’s butterfly’ effect seen in the energy spectrum under a constant magnetic field.
EPJ B Topical Review - Electronic structure and optical properties of semiconductor nanowires polytypes
- Details
- Published on 29 January 2020

Advances in the fabrication and characterization of nanowires polytypes have made crystal phase engineering a well-established tool to tailor material properties. In a new review article published in EPJB, Luiz Galvão Tizei and Michele Amato (Université Paris-Saclay, CNRS, LPS, France) describe recent progress in the field, with special focus on the central role that crystal phase has in modulating the electronic and optical properties of nanowires.
EPJ B Highlight - Spinning quantum dots
- Details
- Published on 15 January 2020

A theoretical analysis of electron spins in slowly moving quantum dots suggests these can be controlled by electric fields.
The name ‘quantum dots’ is given to particles of semiconducting materials that are so tiny – a few nanometres in diameter – that they no longer behave quite like ordinary, macroscopic matter. Thanks to their quantum-like optical and electronic properties, they are showing promise as components of quantum computing devices, but these properties are not yet fully understood. Physicists Sanjay Prabhakar of Gordon State College, Georgia, USA and Roderick Melnik of Wilfrid Laurier University, Waterloo, Canada have now described the theory behind some of these novel properties in detail. This work is published in EPJ B.
EPJB - Eduardo Hernandez and Heiko Rieger appointed Editors-in-Chief
- Details
- Published on 10 January 2020

The new year sees big changes for EPJ B, with two new Editors-in-Chief appointed from January 2020. Prof Dr Heiko Rieger (Saarland University, Germany) and Prof Eduardo Hernandez (ICMM-CSIC, Spain) take on joint EiC roles, with broad responsibility for papers in statistical physics and condensed matter physics respectively. At the same time, Prof Bikas Chakrabarti (Saha Institute of Nuclear Physics, Kolkata, India) and Prof Wenhui Duan (Tsinghua University, China) step down from their roles as Executive Editors on the journal.
EPJ B Highlight - Better studying superconductivity in single-layer graphene
- Details
- Published on 02 December 2019

An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods.
Made up of 2D sheets of carbon atoms arranged in honeycomb lattices, graphene has been intensively studied in recent years. As well as the material’s diverse structural properties, physicists have paid particular attention to the intriguing dynamics of the charge carriers its many variants can contain. The mathematical techniques used to study these physical processes have proved useful so far, but they have had limited success in explaining graphene’s ‘critical temperature’ of superconductivity, below which its’ electrical resistance drops to zero. In a new study published in EPJ B, Jacques Tempere and colleagues at the University of Antwerp in Belgium demonstrate that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.
EPJ B Highlight - Determining the shapes of atomic clusters
- Details
- Published on 16 October 2019

By considering the crystal structures of atomic clusters in new ways, researchers may be able to better assess whether the groups have distinctive shapes, or whether they are amorphous.
Too large to be classed as molecules, but too small to be bulk solids, atomic clusters can range in size from a few dozen to several hundred atoms. The structures can be used for a diverse range of applications, which requires a detailed knowledge of their shapes. These are easy to describe using mathematics in some cases; while in others, their morphologies are far more irregular. However, current models typically ignore this level of detail; often defining clusters as simple ball-shaped structures. In research published in EPJ B, José M. Cabrera-Trujillo and colleagues at the Autonomous University of San Luis Potosí in Mexico propose a new method of identifying the morphologies of atomic clusters. They have now confirmed that the distinctive geometric shapes of some clusters, as well as the irregularity of amorphous structures, can be fully identified mathematically.
EPJ B Highlight - Fractal patterns in growing bacterial colonies
- Details
- Published on 18 September 2019

A new agent-based computer modelling technique has been applied to the growth and sliding movement of colonies of bacteria
As many people will remember from school science classes, bacteria growing on solid surfaces form colonies that can be easily visible to the naked eye. Each of these is a complex biological system in its own right; colonies display collective behaviours that indicate a kind of 'social intelligence' and grow in fractal patterns that can resemble snowflakes. Despite this complexity, colony growth can be modelled using principles of basic physics. Lautaro Vassallo and his co-workers in Universidad Nacional de Mar del Plata, Argentina have modelled such growth using a novel method in which the behaviour of each of the bacteria is simulated separately. This work has now been published in the journal EPJ B.
EPJ B Highlight - Conductivity at the edges of graphene bilayers
- Details
- Published on 11 September 2019

The conductivity of dual layers of graphene greatly depends on the states of carbon atoms at their edges; a property which could have important implications for information transmissions on quantum scales.
Made from 2D sheets of carbon atoms arranged in honeycomb lattices, graphene displays a wide array of properties regarding the conduction of heat and electricity. When two layers of graphene are stacked on top of each other to form a ‘bilayer’, these properties can become even more interesting. At the edges of these bilayers, for example, atoms can sometimes exist in an exotic state of matter referred to as the ‘quantum spin Hall’ (QSH) state, depending on the nature of the interaction between their spins and their motions, referred to as their ‘spin-orbit coupling’ (SOC). While the QSH state is allowed for ‘intrinsic’ SOC, it is destroyed by ‘Rashba’ SOC. In an article recently published in EPJ B, Priyanka Sinha and Saurabh Basu from the Indian Institute of Technology Guwahati showed that these two types of SOC are responsible for variations in the ways in which graphene bilayers conduct electricity.