EPJ D Topical Issue on Quantum Aspects of Attoscience
- Details
- Published on 24 October 2022

This collection of articles contains contributions arising from the virtual conference Quantum Battles in Attoscience. The conference attracted more than 300 attendees from 34 different countries, and has spawned a successful series of bimonthly, online seminars – the so called 'AttoFridays'.
The aim of this novel workshop format was to support constructive debate about areas of controversy in attosecond science, and the centrepiece of the conference program were the Quantum Battles - an interactive, structured debate between early career researchers from competing groups in each field. These three battles – on tunnelling, interference and imaging in intense laser fields, and analytical vs ab initio theoretical approaches – have been written up as articles for this collection and each serves as an in-depth review of the topics, and the controversies therein. Alongside these are several articles on the quantum aspects of attosecond science including decoherence and entanglement in strong or tailored fields and ultrafast dynamics in novel materials. The collection is thus unusual in that it spans fundamental atomic and quantum physics all the way up to quantum technologies.
EPJ D Colloquium - Electron scattering processes: fundamentals, challenges, advances, and opportunities
- Details
- Published on 05 October 2022

Perspectives of a global team of experts on recent and significant advances and challenges in the electron scattering field
Over the past several decades, significant efforts of the electron-scattering community have been devoted to achieving an in-depth and comprehensive understanding of processes that involve low-energy electron interactions with diverse targets, ranging from atoms to complex systems.
EPJD supports public lecture by Nobel Laureate William D Phillips
- Details
- Published on 30 September 2022

EPJD is proud to support the forthcoming public lecture by Nobel Laureate William D Phillips on "Time, Einstein and the Coolest Stuff in the Universe". All are welcomed to join this lecture online at the following
link https://www.youtube.com/watch?v=rgErE2FXCgI
on October 4th 2022
6pm EEST / 5pm CET / 4pm BST / 9am EDT
EPJ D Colloquium - Overview of photo-neutralization techniques for negative ion-based neutral beam injectors in future fusion reactors
- Details
- Published on 16 August 2022
The need for safe, carbon-free and abundant sources of energy is becoming more and more pressing. While still under development, nuclear fusion can play a key role in a medium term, decarbonized energy scenario. However, in order for fusion to be commercially competitive, many sub-systems constituting the current experimental reactors need to be optimized in terms of their efficiency: in particular, DEMO and future fusion energy plants will require a substantial increase in the energy performances of the plasma heating systems.
EPJ D Highlight - Investigating the temperature of large biomolecules in ion-storage rings with jellyfish protein
- Details
- Published on 24 June 2022

New research introduces a simple way to determine the temperature of a stored biomolecule and assess how it changes over time
The range of applications for ultracold molecular systems has grown impressively over recent years to include interstellar chemistry, spectroscopy, and arguably most excitingly, quantum computing.
One way of cooling molecules is by trapping them in cooled ion traps to which the molecules are thermalised before being injected or by injecting them into a room temperature storage ring and then cooling it. To do this effectively, researchers need a method to determine the temperature of molecular ions in an ion-storage ring.
New research published in EPJ D introduces a relatively simple new way to determine the temperature of stored biomolecular ions produced by electrospray ionization, and measure the time evolution of the temperature. The research is authored by Anne P. Rasmussen, Ricky Teiwes, and Lars H. Andersen of the Department of Physics and Astronomy, Aarhus University, Denmark, along with Dilara A. Farkhutdinova, and Anastasia V. Bochenkova of Lomonosov of the Moscow State University chemistry department, Russia.
EPJ D Highlight - Investigating positron scattering from giant molecular targets
- Details
- Published on 24 June 2022

New research looks at positron scattering from rare gas atoms encapsulated in carbon 60 to investigate quantum properties that can’t be tested with electrons.
Particle scattering is an important test of the quantum properties of atoms and larger molecules. While electrons have historically dominated these experiments, their positively charged antimatter counterparts — positrons — can be used in promising applications when the negatively charged particles aren’t suitable.
A new paper published in EPJ D examines the scattering of positrons from rare gas atoms stuffed inside the fullerenes — so-called “rare gas endohedrals.” The paper is authored by Km Akanksha Dubey from the Indian Institute of Technology Patna, Patna, Bihta, India, and Marcelo Ciappina, Guangdong Technion-Israel Institute of Technology, Shantou, China.
EPJ D Highlight - Optimizing silicon structure to reduce reflection
- Details
- Published on 08 April 2022

New research connects the porous structure of silicon and its ability to “trap” incident light.
The world sits on the brink of a major ecological disaster and the need for renewable energy sources has never been more urgent. Perhaps the most significant source of untapped renewable energy is, unsurprisingly, the Sun. It is little wonder that much of the focus of renewable energy research focuses on solar power.
A new paper published in EPJ D examines changes in the porous structure of silicon to make it less reflective and thus a better material for solar absorbing technology. The paper is authored by Daohan Ge, Zhou Hu, Zhiwei Fang, Chao Ni, and Liqiang Zhang of the Institute of Intelligent Flexible Mechatronics, Jiangsu University, China, and Shining Zhu of the National Laboratory of Solid State Microstructures, Nanjing University, China.
EPJ D Highlight - Astrophysical plasma study benefits from new soft X-ray transition energies benchmark
- Details
- Published on 01 April 2022

The new benchmark for X-ray transition energies set for neon, carbon dioxide, and sulfur hexafluoride paves a pathway to high accuracy analysis of astrophysical plasmas.
The analysis of astrophysical plasmas is vital in the quest to learn about some of the Universe’s most powerful and mysterious objects and events such as stellar coronae and winds, cataclysmic variables, X-ray binaries containing neutron stars and black holes, supernova remnants, or outflows in active galactic nuclei. The success of such research will lead to future astrophysical X-ray observatories enabling scientists to access techniques that are currently not available to X-ray astronomy. A key requirement for the accurate interpretation of high-resolution X-ray spectra is accurate knowledge of transition energies.
A new paper published in EPJ D authored by J. Stierhof, of the Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics of Friedrich-Alexander-Universt Erlangen-Nürnberg, Bamberg, Germany, and coauthors utilizes a newly introduced experimental setup at the BESSY II synchrotron facility to provide precise calibration references in the soft X-ray regime of neon, carbon dioxide, and sulfur hexafluoride gases.
EPJ D Highlight - Assessing and optimising the quality of sensor networks
- Details
- Published on 25 January 2022

A new method for optimising the arrangements of complex sensor networks could lead to improvements in a variety of cutting-edge experiments: including the ongoing search for Dark Matter
Rather than using a single, centralised sensor to gather data, many experiments deploy multiple sensors in complex networks. This offers numerous advantages: including higher sensitivities and resolutions in experimental measurements, and the ability to catch and correct errors more effectively. Yet with all the complexities involved in managing each sensor, and collecting all of their data streams at once, it can be extremely challenging to determine how the sensors should be arranged to obtain optimal results. Through new research published in EPJ D, Joseph Smiga at Johannes Gutenberg University Mainz proposes a new way to quantify the quality of sensor networks, and uses his methods to suggest improvements to existing experiments.
EPJ D Highlight - Quantum battles in attoscience: Following three debates
- Details
- Published on 21 October 2021

Discussions among an extensive panel of attoscience researchers have clarified points of tension within the field, and offer new suggestions of how research should move forward in the face of these divisions.
In July 2020, 300 researchers from 34 different countries attended the CECAM virtual workshop, ‘Quantum Battles in Attoscience’. EPJ D presents three community papers which emerged from the in-depth panel discussions held at this occasion.