https://doi.org/10.1140/epjb/e2009-00427-5
Direct fabrication and IV characterization of sub-surface conductive channels in diamond with MeV ion implantation
1
Experimental Physics Department, Centre of Excellence “Nanostructured Interfaces and Surfaces”, University of Torino, and INFN sez. Torino Via P. Giuria 1, 10125 Torino, Italy
2
Quantum Research Laboratory, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
Corresponding author: ettore.vittone@unito.it
Received:
30
July
2009
Revised:
29
October
2009
Published online:
17
December
2009
In the present work we report about the investigation of the conduction mechanism of sp2 carbon micro-channels in single crystal diamond. The structures are fabricated with a technique which employs a MeV focused ion-beam to damage diamond in conjunction with variable thickness masks. This process changes significantly the structural properties of the target material, because the ion nuclear energy loss induces carbon conversion from sp3 to sp2 state mainly at the end of range of the ions (few micrometers). Furthermore, placing a mask with increasing thickness on the sample it is possible to modulate the channels depth at their endpoints, allowing their electrical connection with the surface. A single-crystal HPHT diamond sample was implanted with 1.8 MeV He+ ions at room temperature, the implantation fluence was set in the range 2.1×1016-6.3×1017 ions cm-2, determining the formation of micro-channels with a graded level of damage extending down to a depth of about 3 μm. After deposition of metallic contacts at the channels' endpoints, the electrical characterization was performed measuring the I-V curves at variable temperatures in the 80-690 K range. The Variable Range Hopping model was used to fit the experimental data in the ohmic regime, allowing the estimation of characteristic parameters such as the density of localized states at the Fermi level. A value of 5.5×1017 states cm-3 eV-1 was obtained, in satisfactory agreement with values previously reported in literature. The power-law dependence between current and voltage is consistent with the space charge limited mechanism at moderate electric fields.
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2009