https://doi.org/10.1140/epjb/e2017-80291-4
Regular Article
Assessment of bilayer silicene to probe as quantum spin and valley Hall effect
1
ICQD, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China,
Hefei,
Anhui
230026, P.R. China
2
CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China,
Hefei
230026, P.R. China
a e-mail: majeedqau@live.com
Received:
22
May
2017
Received in final form:
8
December
2017
Published online: 19
February
2018
Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.
Key words: Solid State and Materials
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2018