https://doi.org/10.1140/epjb/e2019-90543-x
Regular Article
Symmetry and symmetry breaking in coupled oscillator communities
Department of Mathematics, Trinity College,
Hartford,
CT
06106, USA
a e-mail: persebastian.skardal@trincoll.edu
Received:
11
September
2018
Received in final form:
30
December
2018
Published online: 20 February 2019
With the recent development of analytical methods for studying the collective dynamics of coupled oscillator systems, the dynamics of communities of coupled oscillators have received a great deal of attention in the nonlinear dynamics community. However, the majority of these works treat systems with a number of symmetries to simplify the analysis. In this work we study the role of symmetry and symmetry-breaking in the collective dynamics of coupled oscillator communities, allowing for a comparison between the macroscopic dynamics of symmetric and asymmetric systems. We begin by treating the symmetric case, deriving the bifurcation diagram as a function of intra- and inter-community coupling strengths. In particular we describe transitions between incoherence, standing wave, and partially synchronized states and reveal bistability regions. When we turn our attention to the asymmetric case we find that the symmetry-breaking complicates the bifurcation diagram. For instance, a pitchfork bifurcation in the symmetric case is broken, giving rise to a Hopf bifurcation. Moreover, an additional partially synchronized state emerges, as well as a new bistability region.
Key words: Statistical and Nonlinear Physics
© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature, 2019