https://doi.org/10.1140/epjb/s10051-021-00084-0
Regular Article - Statistical and Nonlinear Physics
Ferromagnetic and spin-glass like transition in the q-neighbor Ising model on random graphs
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
Received:
2
December
2020
Accepted:
12
March
2021
Published online:
26
March
2021
The q-neighbor Ising model is investigated on homogeneous random graphs with a fraction of edges associated randomly with antiferromagnetic exchange integrals and the remaining edges with ferromagnetic ones. It is a nonequilibrium model for the opinion formation in which the agents, represented by two-state spins, change their opinions according to a Metropolis-like algorithm taking into account interactions with only a randomly chosen subset of their q neighbors. Depending on the model parameters in Monte Carlo simulations, phase diagrams are observed with first-order ferromagnetic transition, both first- and second-order ferromagnetic transitions and second-order ferromagnetic and spin-glass-like transitions as the temperature and fraction of antiferromagnetic exchange integrals are varied; in the latter case, the obtained phase diagrams qualitatively resemble those for the dilute spin-glass model. Homogeneous mean-field and pair approximations are extended to take into account the effect of the antiferromagnetic exchange interactions on the ferromagnetic phase transition in the model. For a broad range of parameters, critical temperatures for the first- or second-order ferromagnetic transition predicted by the homogeneous pair approximation show quantitative agreement with those obtained from Monte Carlo simulations; significant differences occur mainly in the vicinity of the tricritical point in which the critical lines for the second-order ferromagnetic and spin-glass-like transitions meet.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.