https://doi.org/10.1140/epjb/s10051-024-00708-1
Regular Article - Statistical and Nonlinear Physics
State equation of two-dimensional inchworm-type active particles
Department of Physics, Jinan University, Guangzhou, Guangdong Province, China
Received:
12
December
2023
Accepted:
13
May
2024
Published online:
28
May
2024
This study utilized molecular dynamics simulations to explore the collective behavior of the two-dimensional self-propelled particles known as the inchworm particles, which are characterized by periodic variations in internal structure and driving force. Our primary objective is to elucidate the influence of the particle’s motion mode on pressure. We established a state equation for pressure derived from the observed motion mode and observed that inchworm-type particles exhibit distinct high-temperature characteristics in the pressure–temperature curve, unlike spherical self-propelled particles. Notably, their active pressure does not entirely diminish with increasing temperature. Distinct variations in the behavior of self-propelled particles across different sizes are identified. The findings contribute a more intricate model for the internal structure of self-propelled particles, offering valuable insights into this research area.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.