https://doi.org/10.1140/epjb/s10051-025-00964-9
Regular Article - Solid State and Materials
Interfacial properties in edge-contact Borophene/BAs from first-principle study
1
School of Physics and Astronomy, Beijing Normal University, 100875, Beijing, China
2
School of Science, Jiangnan University, 214122, Wuxi, China
a
liaobingz@bnu.edu.cn
b
baoanbian@jiangnan.edu.cn
Received:
26
January
2025
Accepted:
17
May
2025
Published online:
1
June
2025
The interfacial properties are investigated in edge-contact Borophene/BAs by the first principles. Boroβ12/BAs,Boroχ3/BAs and HBoro/BAs show high charge inject efficiency because of the absence of tunnel barrier. BAs at contact interface is metallized in Boroβ12/BAs and Boroχ3/BAs. The Boroβ12/BAs and Boroχ3/BAs have p-type Schottky barrier heights of 0.484 eV and 0.404 eV, while HBoro/BAs displays n-type Schottky barrier height of 0.289 eV. Few metal induced gap states in the channel of HBoro/BAs suggest better electronic transport. Moreover, it is found that the electric field changes the Schottky barrier height and contact type of the heterojunction, as well as causes the Ohmic contact. This work provides a way for the potential of BAs devices based on Borophene electrodes.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2025
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.