2021 Impact factor 1.398
Condensed Matter and Complex Systems

EPJ B Colloquium - Thermodynamics and kinetics properties of condensed matter derived through the properties of an intrinsic defect

alt
Elementary jump of an interstitialcy in an fcc Lattice. Open circles (red), before jump; closed circles (blue), after jump (Fig. 6 from the paper).

The theory of interstitialcy for simple condensed matters is a theory formulated by Andrew V. Granato enable the determination of the thermodynamic and kinetic properties of simple liquids and glasses. In a new Colloquium in EPJ B the author provides a simpler, more physical and compelling version of his interstitialcy theory. In addition, the results of computer simulations, together with direct and indirect experimental evidence, are updated and reviewed. In addition, the results of computer simulations, together with direct and indirect experimental evidence, are updated and reviewed. The connection between theory and experiment for some of the more notable properties of simple condensed matter is discussed. The direct visual observation of interstitial diffusion to the surface of irradiated platinum thin films near 20K by Morgenstern, Michely and Comsa provides compelling evidence for the interstitialcy theory presented herein.

Interstitialcy theory of simple condensed matter. Andrew V. Granato (2014) Eur.Phys. J. B 87: 18, DOI: 10.1140/epjb/e2013-41024-1

Editors-in-Chief:
E. Hernandez and H. Rieger
Thank you for the very fruitful and efficient collaboration. It has been a pleasure!!

Paul van Loosdrecht, Guest Editor Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials, 2013

ISSN (Print Edition): 1434-6028
ISSN (Electronic Edition): 1434-6036

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag

Conference announcements