https://doi.org/10.1140/epjb/s10051-024-00818-w
Regular Article-Solid State and Materials
Magnetic quantum behavior of surface-doped three-layer graphene-like system based on spin wave theory
1
School of Science, Shenyang University of Technology, 110870, Shenyang, China
2
School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, China
Received:
24
September
2024
Accepted:
28
October
2024
Published online:
27
December
2024
The spin wave spectra and magnetic moments of a surface-doped graphene-like structure, composed of eight distinct atoms are studied, taking spin quantum number and temperature into account. The results show that the model has a total of eight spin wave spectra and three energy gaps and We note that the magnetic moments intersect at low temperatures, which can be attributed to quantum fluctuations. Therefore, we explore the influence of different magnetic parameters on quantum fluctuations within a three-layer model. The result shows that, in comparison to interlayer exchange coupling, intra-layer exchange coupling has a more pronounced influence on the quantum fluctuation within the three-layer model. Magnetocrystalline anisotropy of different acting forms has opposite effects on quantum fluctuation, The magnetocrystalline anisotropy inside the antiferromagnetic layer has the most obvious effect on the quantum fluctuation of the model. The quantum fluctuation values of the two sublattices in the ferromagnetosphere differ very little.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.