https://doi.org/10.1140/epjb/s10051-024-00833-x
Regular Article - Mesoscopic and Nanoscale Systems
The role of laser field in the electron transport through serially coupled double-quantum dots
Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
a
majed.nattiq@uobasrah.edu.iq
Received:
3
March
2024
Accepted:
21
November
2024
Published online:
17
December
2024
In this study, a mathematical model is developed to study the transport properties of a system consisting of serially coupled double-quantum dots embedded between two nonmagnetic leads in the presence of a laser field effect on double-quantum dots. To examine the device properties and develop a spin-dependent analytical formula for the occupancy numbers, related quantum dot energy levels and the molecular virtual levels, the treatment in this research is based on the time-independent Anderson–Newns model. These formulas are solved self-consistently to compute the tunneling current which is utilized to calculate the differential conductance “Our calculations focus on the strong regime”. All the parameters that included in our calculations can be tuned experimentally. It is found that the electron transport through the system is enhanced as the frequency of the laser field increases, and the energy window is getting wider too. These results are very important to be applied to nano-devices, since the laser can be used as a tool to assist the transport of electrons through the system.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.